
AppSec: A Safe Execution Environment
for Security Sensitive Applicationst

Jianbao Ren
Xi’an Jiaotong University
renjianbao@stu.xjtu.edu.cn

Yong Qi
Xi’an Jiaotong University
qiy@mail.xjtu.edu.cn

Yuehua Dai
Xi’an Jiaotong University
xjtudso@stu.xjtu.edu.cn

Xiaoguang Wang
Xi’an Jiaotong University
mailwxg@foxmail.com

Yi Shi
Xi’an Jiaotong University
shiyi@mail.xjtu.edu.cn

Abstract
Malicious OS kernel can easily access user’s private data
in main memory and pries human-machine interaction data,
even one that employs privacy enforcement based on ap-
plication level or OS level. This paper introduces AppSec,
a hypervisor-based safe execution environment, to protect
both the memory data and human-machine interaction data
of security sensitive applications from the untrusted OS
transparently.

AppSec provides several security mechanisms on an
untrusted OS. AppSec introduces a safe loader to check
the code integrity of application and dynamic shared ob-
jects. During runtime, AppSec protects application and dy-
namic shared objects from being modified and verifies ker-
nel memory accesses according to application’s intention.
AppSec provides a devices isolation mechanism to prevent
the human-machine interaction devices being accessed by
compromised kernel. On top of that, AppSec further pro-
vides a privileged-based window system to protect appli-
cation’s X resources. The major advantages of AppSec are
threefold. First, AppSec verifies and protects all dynamic
shared objects during runtime. Second, AppSec mediates
kernel memory access according to application’s intention
but does not encrypts all application’s data roughly. Third,
AppSec provides a trusted I/O path from end-user to appli-
cation. A prototype of AppSec is implemented and shows
that AppSec is efficient and practical.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’15, March 14–15, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-3450-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2731186.2731199

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection

General Terms Design, Security, Performance

Keywords Privacy, VMM, Kernel, Human-machine inter-
action

1. Introduction
Operating system controls all system resources and is the
root of trust, so compromising the OS compromises every-
thing on the system. Compromised OS can freely get our
sensitive information through accessing main memory or
intercepting human-machine interaction. If an application
could remain safe even if OS were compromised, then OS
exploits would no longer have the security threats as today.

Previous works on untrusted OS mainly focus on mem-
ory data and simply isolate trusted code and data from OS
kernel [11, 27, 36, 37] or encrypts all data flowing to ker-
nel roughly [15, 16, 31, 48]. Applications and OS either
need to be re-designed or compiled statically. Besides, this
arbitrary encryption may make applications unusable. For
example, a web browser whose data is encrypted by the
privacy protection mechanism can not communicate with
web servers which does not run the corresponding decryp-
tor. Although some applications can operate on encrypted
data [10, 40, 46], cryptographic schemes for general-purpose
computing [28, 29] have severe performance overhead and
some data cannot be encrypted, like keyboard input and
screen output.

Because human-machine interaction data is processed in
plaintext, protections are still incapable without considering
the security of human-machine interaction. Some dedicated
work has been done to enforce the human-machine interac-
tion [17, 23, 50]. However, they either need to modify the
device drivers to eliminate any dependencies on the OS ker-

187

nel or hinder applications communicating with others. That
is tedious and difficult to port on different systems.

This paper introduces AppSec, a hypervisor-based sys-
tem in which an untrusted operating system’s behavior
is verified according to application’s intention and all
human-machine interactions are enforced, without mod-
ifying OS kernel and applications. To achieve these goals,
we meet to solve the following problems on an untrusted OS:

1. How to infer application’s intention and verify kernel’s
memory access transparently?

2. How to protect the security of all application linked dy-
namic shared objects (DSOes)?

3. How to protect human-machine interaction devices against
a compromised OS?

4. How to enforce the security of application’s X resource
(e.g., clipboard, screen contents)?

AppSec provides several mechanisms to tackle these
problems. AppSec intercepts every system call to infer ap-
plication’s intention. This includes the system call an appli-
cation has invoked and the memory range that an applica-
tion allows OS to access. During runtime, AppSec verifies
whether a system call is invoked and whether the corre-
sponding memory access is in accordance with application’s
intention. We know that all security sensitive applications
pay much attention to their data security. So all applica-
tion intended data transmission to a compromised kernel
would not leak any privacy. To extract application’s in-
tention, AppSec intercepts security sensitive application’s
system calls. By analyzing the corresponding parameters,
AppSec can validate OS kernel memory access at byte gran-
ularity. Verifying kernel memory access according to appli-
cation’s intention can protect user’s privacy effectively and
avoid encrypting all application data roughly.

Before verifying kernel memory access, we should iden-
tify which memory pages belong to a security sensitive ap-
plication, but the dynamic memory allocation makes things
a little more complicated. Previous work either instruments
OS kernel or modifies applications to collect the page usage
information explicitly [16, 31, 36]. While it may be bypassed
when OS is compromised and it is not transparent to OS and
applications. AppSec uses a skillful and non-bypassed page
tracking based on hardware nested page table to deal with
the dynamic memory allocation transparently. Its innovative
features are that it does not instrument or modify OS ker-
nel or applications and every physical pages once used by a
protected application can be detected immediately.

DSOes are shared by all applications and their security
is critical to user’s privacy. Previous work compiles appli-
cations statically to avoid the security problem caused by
DSOes [15, 16, 31, 48]. However, this loses the advan-
tages of DSOes (e.g., updating during runtime). Besides,
some close-source applications cannot be compiled stati-

cally. AppSec introduces a safe loader to check the code in-
tegrity of DSOes. During run-time, AppSec write-protects
DSOes code and uses a skillful page tracking to verify the
DSOes memory access.

For the security of human-machine interaction, AppSec
uses an isolated dedicated customized OS to host the related
input/output devices drivers and the X window server. All
data transmissions between sensitive applications running on
an untrusted OS and X server are encrypted. IOMMU and
IOAPIC are used to protect the human-machine interaction
devices from being attacked by the untrusted OS. On top of
human-machine interaction devices protection, AppSec in-
troduces a privilege-based window access control policy to
prevent various attacks towards X window system, such as
accessing chipboard and taking screenshot. All these pro-
tections are compatible with traditional applications and OS
kernel.

In summary, we make the following contributions:

1. AppSec proposes a kernel memory access verifying
mechanism based on applications’ intention without re-
designing or modifying applications and OS kernel.

2. AppSec introduces a safe loader to verify the code in-
tegrity of protected applications and DSOes which avoids
compiling applications statically and keeps the advan-
tages of DSOes.

3. AppSec proposes a security human-machine interaction
channel and a privileged-based window system to protect
all human-machine interaction data. Both mechanisms
do not need to modify OS kernel or the corresponding
drivers.

4. We have implemented a prototype of AppSec. All protec-
tions provided by AppSec are transparent to applications
and OS kernel. An extra benefit of AppSec is that it can
prevent ret2user [32] and ret2dir [33] attacks effectively.
The experiments show that, with all protections, AppSec
only incurs 6%∼10% performance overhead.

In the next section, we give the threat model and some as-
sumptions of AppSec. In Section 3, we give an overview of
AppSec. In Section 4 and Section 5, we show how AppSec
ensures the memory data security and human-machine in-
teraction security respectively. The evaluation of AppSec is
presented in Section 6.We discuss the limitation and our fu-
ture work in Section 7. In Section 8, we compare AppSec
with other work. In Section 9, we conclude our work.

2. Threat Model and Assumptions
In this section, we describe the threat model and our assump-
tions.

2.1 Threat Model
We consider an attacker who exploits the OS kernel vul-
nerabilities and has the full control of computer system but

188

the CPU, the memory controller, system memory chips and
the corresponding system bus. Example attacks are: access-
ing any memory pages, injecting code into OS kernel and
the sensitive application, malicious DMA accessing, surrep-
titiously obtaining sensitive user-input data by recording key
strokes, screenshot of sensitive application display etc.

2.2 Assumptions
We assume that all hardware is trusted, no bus traffic inter-
ception, no Trojan-Horse circuits or malicious microcode.
We also assume the system firmware (e.g., BIOS) is trusted.

The protection object of AppSec is security sensitive ap-
plications. We assume they are conscious of flowing out data
and encrypt it timely, for example, encrypting the file con-
tents before writing them to disk and encrypting the network
connection when communicating with others. AppSec does
not prevent a private data leakage because of the vulnerabili-
ties of an application itself. Denial-of-service attacks caused
by a compromised kernel are also out of our scope. We also
do not consider any side-channel attacks like timing, cache-
collision.

AppSec is based on our previous work, a lightweight hy-
pervisor whose interface has been verified [20, 21], we as-
sume the hypervisor is trusted. And we assume that the CPU
supports hardware virtualization, such as AMD Secure Vir-
tual Machine (SVM) or Intel Trusted eXecution Technology
(TXT) [18, 47].

3. System Overview
In this section, we start off by stating the desired properties
to enforce the security of private data. Then we describe the
challenges involved and present an overview of AppSec at
last.

3.1 Desired Properties
In order to provide a safe and practical execution environ-
ment, AppSec seeks to meet the following properties.
Memory Access Verification. This is the cornerstone of a
safe execution environment. AppSec must ensure that every
memory access from kernel to a protected application should
be verified according to application’s intention.
Code and Control Flow Integrity. AppSec needs to guar-
antee the code integrity of sensitives application and all
DSOes they linked during the whole life-cycle. During run-
time, application may be interrupted at any time by OS ker-
nel. AppSec must ensure the execution of an interrupted ap-
plication begins at the interrupted site to prevent compro-
mised kernel injecting malicious code into the protected ap-
plication.
Trusted Human-Machine Interaction Path. Because all
human-machine interaction data is plaintext, AppSec must
protect it from being stolen or peeked by compromised OS
and other applications.
Device Operation Verification. This consists of two differ-
ent aspects. First, AppSec must prevent compromised OS ac-

cessing the human-machine interaction devices or intercept-
ing their events. Second, AppSec must prevent the malicious
device DMA accessing to sensitive application memory.
Compatibility and Transparency. Although these are not
security properties, but are very important in practice. AppSec
should not modify OS kernel and sensitive applications.
Low Performance Overhead. The safe execution environ-
ment provided by AppSec should incur acceptable overhead.
And the performance overhead incurred to the other normal
applications should be as little as possible.

3.2 Challenges
We now discuss the challenges we are facing in designing
such a safe execution environment. The very first problem is
the semantic gap between guest OS and AppSec. Because
AppSec does not instrument the OS kernel or applications,
it cannot get the exact information about the interactions be-
tween OS kernel and applications. This makes AppSec dif-
ficult to judge whether a memory access from kernel to ap-
plication is application intended. The dynamic memory al-
location makes things more complicated. It is difficult for
AppSec to know which pages belong to a protected appli-
cation and whether one page of a protected application is
freed.

The next issue is raised by the dynamic shared objects.
A tampered DSO may steal user’s private data by chang-
ing application’s original semantics. For example, the str-
cpy function can be modified to pass private data to a com-
promised kernel. So AppSec must ensure the code integrity
of DSOes. Unfortunately, the random loaded location of
DSOes makes this verification difficult. Besides, DSOes are
shared by all applications. AppSec must distinguish whether
the DSO code execution is in the context of a protected ap-
plication or not. This is a premise for AppSec to judge if a
memory access is from sensitive application itself.

Another problem we are facing is the human-machine
interaction devices security. All devices drivers are hosted
by OS kernel. Thus, once OS kernel is compromised, the
adversary can capture all data passing through the human-
machine interaction devices. What’s more, the interrupt vec-
tor’s mis-configuration can also cause a benign drivers’ mis-
behavior and leak user’s privacy.

The last issue is the innate problem of X system. The de-
sign philosophy of X system makes the trusted-path failure
even if OS kernel and device drivers are trusted. For exam-
ple, a malicious application can access the private data stored
by a sensitive application in clipboard without any restric-
tion. Applications can also use the corresponding functions
(e.g., XGetImage) to get the screen contents. This exposes a
sensitive application to risk.

3.3 AppSec Architecture Overview
Figure 1 illustrates the architecture of AppSec. The light
weight VMM [20, 21] runs on bare-machine and provides
a strong isolation to run two different OSes simultaneously.

189

Hardware

Linux Kernel Customized Kernel

Dynamic shared objects
Xserver

Apps

X11

Safe loader

App

VMM Kernel Access
Validator

Page Tracker
Device

Monitor

Privilege-based
Xwindow Manger

Computing Domain I/O Domain

Figure 1. The architecture of AppSec.

One OS provides a normal computing environment and is
called computing domain. The other one, running a cus-
tomized kernel and only providing the X system service, is
called I/O domain. I/O domain controls all human-machine
interaction devices. Because I/O domain just serves the
human-machine interaction requests and can only commu-
nicate with outside through X server’s interface, we assume
it is hard to be compromised.

A security sensitive application is loaded by the safe
loader as depicted in Figure 2. The safe loader checks the
integrity of DSOes and applications according to the hash
values which are calculated in advance. Safe loader can dis-
tinguish which applications and DSOes are needed to check
and invokes hypervisor to get the correct hash values trans-
parently. We expect some third-parties could manage these
hash values and provide them through Internet in the future.
And now, we just store these hash values in hypervisor.

The hardware nested paging technique is leveraged by
AppSec to construct a strong isolation between sensitive
applications and OS kernel transparently. Sensitive applica-
tions can store their encryption keys in user space as normal.
The un-bypassed and transparent page tracker collects ap-
plication memory pages information in real-time. Everytime
when kernel access sensitive applications’ memory, a nested
page table (NPT) fault is raised. In the NPT page fault han-
dler, AppSec verifies kernel memory access according to ap-
plication’s intention. Access which is not in accordance with
application’s intention is denied.

AppSec encrypts all X connections to prevent computing
domain kernel picking up the communication between sen-
sitive applications and X server. Moreover, we retrofit the
X system to support a privilege-based window management.
The protected application is in the highest privilege level.
AppSec ensures that the low privilege group windows cannot
access the resource of high privilege group windows. This
can effectively solve the aforementioned innate problem of
X system.

4. Memory Data Security Enforcement
In this section, we discuss how AppSec tackles the afore-
mentioned challenges to guarantee the memory data security
of a security sensitive application. We start off by stating
how AppSec constructs a trusted initial environment. And
then, we show how AppSec protect application’s private data
during runtime. This includes tracking application’s page in
real-time, protecting application context switch and verify-
ing kernel memory access.

4.1 Environment Initialization
4.1.1 Safe Loader
The very first problem to protect a security sensitive applica-
tion is how to integrate it with AppSec transparently and en-
sure the code integrity of itself and all DSOes it linked. The
easiest way is modifying the application to invoke hyper-
visor explicitly. However it conflicts with our transparency
requirement. As we know, OS alway invokes the ELF (Ex-
tensible Linking Format) loader as a interpreter before trans-
ferring control flow to ELF applications. AppSec introduces
a safe loader to replace the Linux traditional standard ELF
loader.

The safe loader is aware of which application will run and
invokes AppSec to verify its code integrity. It uses the hyper-
call to communicate with the core components of AppSec
which run in the VMM. All these communication is imper-
ceptible to OS kernel. The verification result is presented to
user via a trusted dialog box. Such a dialog box, which ex-
ecutes under the control and with the privileges of hypervi-
sor (not the OS), is often called a “powerbox” [41]. Except
the verification results, the trusted dialog box also contains
a user personal reserved information like a bank counterfoil.
This can avoid OS faking the dialog box and bypassing the
safe loader to run security applications.

The random loaded address of DSOes confuses AppSec
with their code integrity checking. Previous works require
the application to be compiled statically to eliminate this
confusion. These conflicts with our transparency require-
ment and loses the advantage of DSOes. Because ELF loader
is responsible for loading all DSOes into application’s ad-
dress space, the safe loader knows the memory mapping in-
formation of each linked DSO exactly. When the safe loader
loads DSOes into application’s address space, it records their
virtual address and the corresponding inner offset.

As the demand paging mechanism used by OS kernel,
before invoking AppSec to verify the code integrity, the
safe loader touches all virtual pages to force OS loading the
corresponding physical pages into memory. Combining with
the address space isolation mechanism, AppSec can ensure
the application and all DSOes it linked cannot be modified
after they are verified.

190

Code Integrity
Checking

Run Time X ServerlibX11

Access Validating

Page Tracking

Security Sensitive Application

Safe Loader

Kernel Memory
Access

Privilege-based
Access Control

Encrypted

Figure 2. Overview of AppSec to protect a sensitive application for while life-cycle.

Not-present

Executable
Present

Not-present

Executable
Present

Read-only

Present

Not-present

Executable
Present

Executable
Present

Read-only

Kernel Memory

Sensitive Application
Memory

Other Application
Memory

Dynamic Shared
Objects

Sensitive Application
SPT

Kernel SPT

Figure 3. The SPT difference between the sensitive appli-
cation and OS kernel.

4.1.2 Address Space Isolation
After the code integrity verification, AppSec isolates sensi-
tive applications from OS kernel and other applications. The
nested paging hardware virtualization is used to construct
such isolation environment. Nested paging technology pro-
vides two levels of address translation (i.e., translation from
guest liner address to guest physical address and translation
from guest physical address to machine address). The page
table which translates guest address to machine address is
called SPT (Shadow Page Table). The corresponding imple-
mentation of AMD and Intel processors are called NPT and
EPT respectively.

AppSec provides different SPTs for sensitive applications
and OS kernel. As Figure 3 shows, the SPT of sensitive ap-
plications contains all page mappings of their user space.
Oppositely, all pages of sensitive applications are masked
not-present in the SPT of OS kernel. Other applications
share the same SPT with OS. As DSOes are shared by all
applications, we mask all their pages present and read-only
in every SPT. Because SPTs are maintained by hypervisor,
OS kernel is unaware of the SPT page mapping and it can
still manage the guest physical address mapping with its own
page table. Everytime when OS access the protected applica-
tion, a SPT fault will be triggered. In the SPT fault handler,
AppSec can verify the kernel memory access transparently
according to application’s intention and the details are stated
in Section 4.2.3. Because the SPT is transparent to OS, the
memory access verification cannot be bypassed no matter
what the attacker does to the OS kernel.

Currently, AppSec uses group-based policy to manage
applications. All applications in the same group share one
SPT and can communicate with each other as normal. Child
processes belong to the same group with their parent in de-
fault. So child processes and parent process can communi-
cate with each other based on shared memory freely. For un-
shared memory communications like pipe, socket, AppSec
assumes that applications encrypt private data by themselves
or use an encrypted connection and does not intervene these
communications.

Only isolating applications from OS kernel is inadequate
to protect their private data. Compromised OS may map a
page containing malicious codes into protected application’s
user space or replace a legal virtual page mapping with a
malicious physical page and then transfers control flow to
this page when a system call returns. As the malicious code
resides in the same address space with the sensitive applica-
tion, they can access the sensitive application memory data
straightly. What’s more, compromised OS kernel can also
fork a fake child process to get it sharing the same SPT with
a protected application. OS kernel can map the protected ap-
plication’s physical pages into the fake child process address
space and access the protected application’s memory indi-
rectly through the fake child process. We will show how to
prevent these attacks in Section 4.2.2.

4.2 Runtime Protection
During runtime, a sensitive application interacts with OS
kernel frequently. This includes memory allocation, data
transmission, context switch and so on. AppSec has to in-
tercept these interactions and verifies the validity of these
interactions according to application’s intention.

4.2.1 Page Tracking
Before verifying OS memory access, we must know which
memory pages belong to a protected application first. The
very first problem to get the memory page usage informa-
tion during runtime is caused by the dynamic memory allo-
cation. Because of the semantic gap, it is difficult for AppSec
to know if one page is allocated to an application or if one
page is freed by an application. Instrumenting all memory al-
location interfaces is the most obvious way to notify AppSec
about the dynamic memory usage information. However,
this is not transparent to OS kernel and may be bypassed

191

if OS kernel is compromised. An optimum solution is im-
plementing the page tracking into hypervisor.

AppSec uses a lazy memory page usage tracking mech-
anism to deal with the dynamic memory allocation. When
a page is allocated to sensitive application by OS, AppSec
does not know this allocation and the physical page is still
not-present in the application’s SPT. So, when the applica-
tion touches this page for the first time, an SPT fault would
be raised. In the SPT fault handler, AppSec knows a mem-
ory page allocation has occurred passively and updates the
corresponding SPT (i.e., mask the page present in protected
application’s SPT and not-present in OS kernel’s SPT). In or-
der to make sure that all CPU cores have a coincident page
mapping, AppSec must flush other CPU’s TLB cache.

DSOes make things a little more complicated. As afore-
mentioned, all applications share the same physical pages
of DSOes. So when an SPT fault occurs in DSOes, we must
identify if it is caused by a sensitive application. It is straight-
forward to use the different SPTs to identify the context.
When an SPT fault occurs during the usage of sensitive ap-
plication’s SPT, we consider this SPT fault is caused by a
sensitive application, otherwise it is caused by OS or other
applications.

Unfortunately, it is likely that a sensitive application may
execute with the OS kernel SPT sometimes. For example,
when a sensitive application executes in DSOes code, OS
may schedule other applications to run. AppSec switches the
SPT and uses OS kernel SPT to run other applications. As all
DSOes are masked present in OS kernel SPT, when the sen-
sitive application is scheduled back, it will run with kernel
SPT. To solve this problem, we compel the control flow to be
transferred into a fixed address every time when the context
switches from OS to protected applications. This fixed ad-
dress could cause an SPT fault and in the SPT fault handler
AppSec switches the SPT to run the protected application.
The detail is presented in Section 4.2.2.

The global variables of DSOes would cause the whole
system unusable if we use the aforementioned page tracking
directly. For example, when sensitive application read its
DSOes global variable for the first time and thus causes an
SPT fault in the context of sensitive applications, AppSec
masks the corresponding page not-present in the kernel SPT.
This prevents other applications access the same DSOes
variable.

We refine the aforementioned page tracking to tackle this
problem. Figure 4 shows the page states transition graph.
When the first access to a virtual page (“S”) is a read oper-
ation, AppSec masks the corresponding page read-only and
present on the SPTs of both kernel and sensitive application
(“SR”). This is safe for the security sensitive application, be-
cause a memory page does not leak any privacy until it is
written. While the first access to either “S” or “SR” state
is a write operation, AppSec masks the corresponding page
writable in the sensitive application SPT and not-present

Page-alloc

Write

Read

Read

Write

PRW

Physical PageS

Virtual Page

SR

Physical Page

Figure 4. The state transition diagram of SPT page. “SR”
means shared and readable, “P” means private and “W”
means writable.

in the kernel SPT. Because of the COW (Copy On Write),
OS will allocate a exclusive page to an application when a
shared page is written. So masking this exclusive page not
presented in kernel SPT would not cause whole system un-
usable.

Unlike the memory allocation, page free operation does
not cause SPT fault. AppSec learns the memory page free
operations by intercepting the corresponding system calls
(i.e., munmap and brk). AppSec uses these system calls’
parameters to infer which pages are freed and cleans their
contents before masking them present in the OS kernel SPT.

4.2.2 Context Switch
AppSec need to intercept the context switch precisely to
chose different SPTs and to protect the control flow integrity.
Because security sensitive applications and OS kernel use
different SPTs, when the context switch from user space to
kernel space, a SPT fault will be raised. In the SPT fault
handler, AppSec records the context switch site (i.e., system
call return address and interrupt location) and changes the
context switch back site to a fixed address directly. Besides,
AppSec also records all system and their parameters to serve
the later memory access verification. The fixed address can
trigger a SPT fault proactively. So every context switch from
kernel space to user space can be also intercepted.

When context switch from kernel space to user space,
AppSec switches the SPT and drops the CPU privilege to
level3. And then, AppSec pushes the original return address
into application’s stack and uses a ret instruction to take the
control flow to application at the context switch site. AppSec
ensures that every context switch from kernel space to user
space can only transfer control flow to the aforementioned
fixed address. OS can modify its stack to return at any ad-
dress definitely. However, returning to other address makes
CPU running with kernel NPT. When applications memory
is touched (access, execute), AppSec can detect this mali-
cious action in NPT fault handler. In order to tame the signal
mechanism, AppSec records every signal handler address in
a table by analyzing the corresponding system calls. Every
time when OS does not transfer control flow to aforemen-
tioned fiexed address, AppSec check if it transfers to a sig-
nal handler. If not, AppSec provides a warning information
through a trusted dialog box to user.

192

As we mentioned in Section 4.2.1, malicious OS kernel
may inject malicious codes into protected applications and
transfer control flow to the malicious codes when a system
call returns. AppSec ensures control flow can only be trans-
ferred from OS kernel to user space at some known sites (i.e.,
ether the fixed address or a signal handler). So malicious
OS kernel has no chance to execute the injected malicious
codes. For the virtual page remapping attacks, an NPT fault
will be raised when CPU execute in the faked physical page.
However, an NPT fault should not occur at text segment be-
cause the safe loader has already loaded all text segments
into memory. So AppSec can detect this attack in NPT han-
dler. To prevent the fake child process attack, AppSec ver-
ifies whether a corresponding “fork” system call has been
invoked by sensitive applications. Because all child process
share the same code segment with their parent, even if the
compromised OS kernel create a faked child process dur-
ing the sensitive application invokes a ”fork” system call,
AppSec still ensures that OS cannot inject malicious code in
this fake child process.

In implementation, changing a context switch site to a
fixed address may crash sensitive applications. That is be-
cause OS checks the switch site address in some cases. For-
tunately, these cases are rare and we can deal with them re-
spectively. For example, the “ time” function uses “vsyscall”
to get the time. OS checks if the context switch site locates
between 0xffffffffff600000 and 0xffffffffff601000 which is the
vsyscall mapping address range. If not, OS terminates the ap-
plication. In this example, OS kernel returns back to the ap-
plication according to a value stored in the user space stack
instead of the context switch site. So AppSec modifies this
value instead of the context switch site to pass the OS check-
ing.

4.2.3 Memory Access Verification
During run-time, in order to get system service, a sensitive
application must allow OS to access its memory. It is nec-
essary for AppSec to distinguish the legitimate operations
from the illegal operations according to application’s inten-
tion. We use a straightforward mechanism to solve this prob-
lem. AppSec records every system call parameters when the
system call is invoked. During runtime, when OS kernel ac-
cesses protected application memory, a SPT fault is raised.
In the SPT fault handler, AppSec verifies if the kernel mem-
ory access is as security sensitive application wanted ac-
cording to the system call parameters. If the memory ac-
cess range is not the application wanted, the memory access
will be denied or only ciphertext will be copied into kernel
buffer depending on user’s configuration. If the memory ac-
cess range is as the application specified, AppSec copies the
protected application memory content to OS kernel’s buffer.
So OS cannot get applications private data even if the private
data locates in the same page with system call buffer.

AppSec uses IOMMU to prevent malicious OS kernel
issuing illegal DMA operations to get a protected applica-

tion memory data. IOMMU uses another page table to trans-
late all DMA operation addresses. We use the same mecha-
nism as memory isolation to isolate security sensitive appli-
cation’s memory data from malicious DMA operations. All
devices use the kernel SPT as their I/O page table in default.
When a protected application needs to do DMA operation,
AppSec constructs a temporary I/O page table to translate
DMA address dynamically.

4.2.4 ret2user and ret2dir Attacks Defense
As the aforementioned mechanism used by AppSec, we have
an extra benefit. That is AppSec can prevent the return-
to-user (ret2user) [32] and ret2dir (return-to-direct-mapped
memory) [33] attacks effectively.

ret2user attacks exploit the OS vulnerabilities to redirect
corrupted kernel pointers to malicious code residing in user
space and then run the malicious codes with kernel privilege.
AppSec intercepts every context switch from kernel space to
user space and drop the CPU privilege to level 3 compulso-
rily. So even if attackers transfer control flow to malicious
codes, it still cannot be executed with kernel privilege.

ret2dir attacks are a little bit more complicated than
ret2user attacks. They map the malicious codes which reside
in user space memory page into OS kernel virtual address
space by leveraging a kernel region that directly maps part or
all of a system’s physical memory. It can bypass all existing
ret2user defenses, like SMEP, SMAP and kGuard [8, 30, 32].
However, with AppSec which uses different SPTs for ap-
plications and OS kernel, application’s physical pages are
masked not present in kernel’s SPT. Codes with kernel priv-
ilege still cannot access data residing in user space even if
the corresponding physical pages are mapped into kernel’s
virtual address space.

5. Trusted Human-Machine Interaction Path
Previous systems mainly focus on the security of memory
data, and the security of I/O path is usually neglected. How-
ever, a practical computing environment facing end users in-
volves a lot of human-machine interactions which are eas-
ily intercepted by a compromised kernel. It is necessary for
AppSec to build such a trusted I/O path from end-user to the
sensitive application against a compromised OS kernel.

It it challenging to protect the human-machine interac-
tion path. The popular operating system integrates all de-
vice drivers into kernel space, like Linux and Windows. If
OS kernel is compromised, all these device drivers are in-
fected. To isolate the trusted path device drivers from OS,
one method is to modify the commodity device driver to
eliminate any dependencies on the OS like [50]. However,
the close-couple design architecture makes it difficult to de-
couple device drivers from OS.

AppSec is inspired by exokernel [24], VirtuOS [38], Xen
frontend backend driver model [26] and X system [7]. As
depicted in Figure 1, AppSec uses a dedicated OS, I/O do-

193

main, to host all human-machine interaction device drivers.
The computing domain can communicate with the I/O do-
main only through the X system interfaces. So, even if the
OS kernel of computing domain is compromised, the I/O do-
main and user’s I/O operation are still safe.

In this section, we first state how to isolate all human-
machine interaction devices from the computing domain. On
the top of human-machine interaction devices isolation, we
show how to retrofit the traditional X system to enforce the
communication between X client and X server and protect
application’s X resource.

5.1 Human-Machine Interaction Devices Isolation
The devices isolation comprise two aspects: device access
isolation and device interrupt isolation.

5.1.1 Device Access Isolation
AppSec isolates human-machine interaction devices from
the computing domain by intercepting the PCI/PCIe configu-
ration space access. During booting, OS kernel traverses the
PCI/PCIe configuration space to enumerate all presented de-
vices. For the X86 architecture, the PCI/PCIe configuration
space is accessed via two special I/O ports (i.e., 0xCF8 and
0xCFC in default) or MMIO regions [5, 14]. AppSec inter-
cepts the configuration space access and masks all human-
machine interaction devices not-present when the comput-
ing domain booting. Similarly, AppSec masks other devices
excluding the trusted path devices not-present when the I/O
domain booting. For some devices whose absence may lead
the OS to stall, AppSec creates these necessary virtual de-
vices and provides the corresponding fake PCI/PCIe config-
uration information. All operations to these virtual devices
will be discarded and AppSec just returns operation success
to upper OS.

During runtime, compromised OS can capture all data
passing through the human-machine interaction devices by
configuring other devices to overlap these devices’ I/O port
space or physical memory space. In order to defend against
these overlap attacks, AppSec verifies every device config-
uration operation. If computing domain tries to overlap I/O
domain devices configuration range, AppSec denies the de-
vice configuration operation and generates an interrupt to the
I/O domain. The I/O domain will show a corresponding at-
tack information on the screen immediately.

5.1.2 Interrupt Isolation
All device accesses are interrupt-driven. Without interrupt
isolation, computing domain can send out any spoofed in-
terrupt to I/O domain which may cause I/O domain wrong
reaction. To make matters worse, the computing domain can
sniff the human-machine interaction interrupt events to infer
user’s privacy. For example, by analyzing the time series of
keyboard interrupt with pattern recognition, attacker can get
what an user inputs easily.

User Space

Kernel Space

X Server

X Protocol Libraries
(XCB, Xlib)

X Client
(Editor, E-Mail...)

X Protocol Libraries
(XCB, Xlib)

Network Drivers Network Drivers

Figure 5. Data transmission path between X client and X
server.

AppSec uses three different methods to isolate interrupts
between computing domain and I/O domain. To prevent the
computing domain sending spoofed interrupt to the I/O do-
main, AppSec intercepts all inter processor interrupts (IPI)
and makes sure that all the IPI destination are confined in
their own domain. To prevent the computing domain sniffing
devices interrupt events and guarantee all human-machine
interaction devices interrupts are delivered to the I/O domain
directly, AppSec uses the other two methods for different in-
terrupt source. For traditional interrupts which are signaled
by asserting an interrupt line (pin), AppSec uses IOAPIC to
route them to the I/O domain. For message signaled inter-
rupts (MSI) which are signaled by writing a particular ad-
dress, AppSec leverages the interrupt remapping features of
IOMMU to route them to I/O domain.

5.2 X System Retrofit
X system is the native display technology on UNIX and
Linux systems. It uses a client-server model to provide the
basic framework for a GUI environment. X server renders
screen contents on the display devices. It forwards the user
inputs from input devices like keyboard, mouse and touch-
screen to applications which are called X clients. The innate
design of X system makes it inadequate for a safe comput-
ing environment. AppSec retrofits X system in two aspects
to protect user’s privacy.

5.2.1 Encrypted Channels
X client communicates with X server through a network
connection. As shown in Figure 5, data is encapsulated by
X protocol libraries and transmitted by OS. Most of the data
transmission is not encrypted [3]. When the OS kernel is
compromised, attacker can get all these transmitted data by
sniffing the network connection.

AppSec modifies the X protocol libraries and adds en-
cryption functions to build an secure channel between X
client and X server. When an X client tries to get connec-
tion to X server, AppSec retrofits the original connection
functions to make sure every connection is encrypted. Be-
cause AppSec guarantees the code integrity of DSOes, this
encryption is un-bypassed and all data transmitted is safe
even though the OS kernel is compromised.

194

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

perlbench bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar xalanbmk

Ru
n

tim
e (

No
rm

ali
ze

d
to

 n
ati

ve
 L

in
ux

)
AppSec_On

1.042 1.034 1.043

1.239

1.074 1.066
1.044

1.021

1.059

1.097

1.041

1.089

AppSec_Off

1.037 1.032
1.005

1.226

1.039
1.064

1.034
1.018

1.054

1.093

1.034

1.077

Figure 6. SPEC CPU2006 performance comparison between AppSec ON and OFF, which is relative to native Linux.

5.2.2 Privilege-based Window Access Control
One design philosophy of X system is that all applica-
tions are good and non-malicious. This leads to the lack
of window-level isolation and allows any client to have full
access other X client resource like clipboard and screen dis-
play. This is disastrous for a security sensitive computing
environment.

AppSec introduces privilege-base window resource ac-
cess control policy in X system. All windows are divided
into different privilege groups, and low group cannot access
high group’s X resource. This is similar to the CPU ring. An
application can be added into the high privilege group only
if it is designated by user explicitly. We use two practical
cases to show how this privilege-based access control work
and what modification should be done to the X system.

Case 1. Clipboard: User uses a document editor to edit
a top-secret document. At the same time, he/she may want
to search on the Internet with a browser to enrich this doc-
ument. Traditionally, the browser can access the document
editor’s clipboard by sending XConvertSelection request to
the X server. X server forwards this request to the editor as a
SelectionRequest request without any verification. After re-
ceiving SelectionRequest, the editor uses XChangeProperty
to pass its clipboard contents, which may contain private
data, to the web browser. With AppSec, user can add the
text editor into the high privilege group manually and leaves
the web browser in the low privilege group. In the Proc-
ChangeProperty function of X server which serves client’s
XChangeProperty request, we check if the browser privilege
is lower than the editor. If that, AppSec encrypts all clip-
board contents and transmits the ciphertext to the browser.

Case 2. Screenshot: Similar to case 1, a text editor is
used to edit a top-secret document. Attacker may get the
screenshot by invoking the XGetImage function stealthily.
In current implementation, AppSec modifies the ProcGetIm-
age function, which serves the client getImage request, to
check whether there are higher privileged windows than the
invoker. If there are, AppSec draws a full-screen rectangle
to overlap these high privileged windows before X server

Table 1. NPT performance for MCF (in seconds).
NPT Enabled NPT Disabled

681.693 570.615

getting the display contents. At last, AppSec sends a Graph-
icsExposure event to all windows to recover their display
contents.

6. Evaluation
In this section, we evaluate the performance overhead im-
posed by AppSec. We ran our evaluations on a Sugon A620r-
G server with two AMD Opteron(tm) 6320 processors at 2.8
GHz, 16GB of DRAM, two integrated PCIe Gigabit Ether-
net cards. The Debian wheezy were installed with the Linux
version 3.10 in our experiments. We used the performance
of native Linux as a base line in all experiments. AppSec
On denotes we ran the test in a safe environment provided
by AppSec and AppSec Off denotes we ran the test on the
AppSec platform but not in the safe environment.

We evaluated AppSec performance overhead on applica-
tion benchmarks as well as a few microbenchmarks. We used
SPEC CPU2006, Apache Benchmark and Google V8 bench-
mark to obtain the effect of AppSec to application in prac-
tice. When AppSec provided a safe environment for a sen-
sitive application, all processors NPT feature were enabled.
In order to get the performance influence to other concurrent
applications, we enabled all processors’ NPT in all applica-
tion benchmarks, no matter if AppSec was on or off. Mi-
crobenchmarks were used to see how AppSec affects primi-
tive OS operations and we just disabled all processors’ NTP
when AppSec was off.

6.1 Application Benchmarks
Figure 6 shows the performance overhead incurred to SPEC
CPU2006 benchmark suit. All results are normalized to na-
tive Linux. AppSec incurs at most 10% performance over-
head to all tests excluding the mcf test. This is because these
tests are CPU-bound and there are little OS interactions. The
worst result is the mcf test. That is because there are a lot of

195

Table 2. Apache web server performance (requests per sec-
ond).

Concurrent
Transactions

Native Linux AppSec On AppSec Off

5 13655.58 12808.75 13600.53
7 14170.44 13592.32 14000.78

TLB misses during its execution. In the native Linux kernel,
it only needs 4 times of memory access to handle one TLB
miss at most. While when NPT is enabled, every TLB miss
in the guest OS would incur 4*4 times of memory access to
finish the TLB mapping at most. We executed mcf test with
NPT enabled and disabled respectively. The result shown in
table 1 confirms our analysis. The overhead is mainly caused
by the hardware virtualization technology and could be re-
duced effectively if the hardware virtualization technology
is improved.

Table 2 shows the performance overhead incurred to
Apache web server. We used Apache Benchmark (ab) to is-
sue 50,000 transactions with the specified number of concur-
rent transactions to the server. In each transaction, a 45-byte
index page was transferred from the server to the Apache
Benchmark client. Compared to native Linux, AppSec only
incurs about 6% performance overhead. This is because we
use extra pages to cache the frequent access memory con-
tent to reduce the number of interaction between AppSec
and OS kernel. AppSec copies application buffer contents
of the most frequently accessed page to a new page. The
new page is mapped read-only in both NPTs of kernel and
applications. Once the new is modified, the cache is invalid.

Table 3. Firefox web browser performance.
Native Linux AppSec OFF AppSec ON

3384 3306 3183
- 97.7% 94.1%

In order to obtain the effect of AppSec to user during the
actual use, we chosen the Google V8 benchmark [2] running
on mozilla firefox to evaluate the AppSec overhead. Table 3
shows the results. Higher score means higher performance.
There is no more than 3% overhead AppSec incurred to the
firefox when turning AppSec off. When turning AppSec on,
the performance overhead is no more than 6%.

6.2 Microbenchmarks
We conducted some more micro experiments to obtain how
much the overhead of AppSec interacting with OS kernel
and user space contributes to the overall overhead. Table 4
shows the results of our experiments. We used null system
call to evaluate the overhead of space switching between an
application and OS. mmap and page fault were used to mea-
sure the performance of the proposed page tracking tech-
nology. fork expressed the overhead of creating a sensitive
application process. File operations shown the overhead of
AppSec incurring to some normal OS interaction operations.

Table 4. Latency microbenchmark results (in microsecond).
Native AppSec On AppSec Off

null syscall 0.023 0.14 0.031
open/close 0.294 1.75 0.307

mmap 3841.8 42629.3 3862.4
page fault 2.21 8.85 2.33
file create 11.5 29.7 11.6
file delete 12.6 31.2 12.7

fork 65.22 3685.12 68.3

When we disable AppSec, there is no interaction between
VMM and guest OS. So, compared to native Linux, AppSec
incurs almost no performance overhead. However, when it
is enabled, every space switch and OS interaction is inter-
cepted and it incurs a little high performance overhead.

Compared with other tests, mmap and fork incur a lit-
tle high performance overhead. That is because, when ap-
plication mapping a file, AppSec marks the corresponding
virtual address range and updates the NPT table when the
application access this address. Similarly, when an applica-
tion process being created, AppSec traverses its whole vir-
tual address space, finds all physical pages it used to ensure
no malicious pages are injected. However, the fork opera-
tion is unfrequent in the desktop environment and the user is
oblivious to this performance overhead.

7. Discussion
7.1 Attestation Chain
In order to build an attestation chain to run a security sensi-
tive application, AppSec leverages the trusted platform mod-
ules (TPM) [6]. The TMP chip ensures that the power-on
boot process starts from a trusted condition and OSV VMM
is not modified. OSV uses hardware virtualization technol-
ogy to isolate its memory pages from guest OS which guar-
antees its integrity during runtime. Every time when a pro-
tected application is launched, AppSec checks the integrity
of safe loader to provide a trust environment automatically.
AppSec outputs all the integrity measurement results on
screen directly or sends them to other computer for remote
attestation. Any integrity check fault would be recorded and
then AppSec terminates the guest OS.

7.2 Limitation and Future Work
AppSec ensures that OS kernel can only access protected
application data according to application’s intention. How-
ever, the correctness of OS cannot be verified which maybe
used by attacker to exploit the Iago attacks. Although we
can check some system call results during context switch,
it is unlikely to be tractable for arbitrary applications given
the complexity of OS interfaces (e.g., Linux includes more
than 300 system calls and Windows well over 1000). We will
leverage Drawbridge [12] to mitigate this problem. What’s
more, the security of human-machine interaction relies heav-

196

ily on the security of X server. AppSec can leverage some
control flow integrity tools [9, 49] to enforce the security of
X server.

Now, every system call causes a lot of context or world
switches (e.g, from guest user to guest kernel, from guest
to host). This incurs a high performance overhead. In the
future, we would use the FlexSC architecture [43] to reduce
the performance overhead. Besides, we also plan to port our
prototype to Intel platform with the help of Intel’s Trust
Execution Technology (TXT).

8. Related Work
In this section, we compare AppSec with the existing tech-
niques of protecting user privacy in two different aspects.

8.1 Memory Data Protection
XOM [35], AEGIS [45] and Cryptopage [22] are proposed
to protect sensitive data from being leaked or tampered.
They do not trust the physical resources, like main memory
and encrypt chips. In contract, we mainly focus on the soft-
ware level attacks. Besides, these protections need to modify
the CPU architecture, which makes them difficult to deploy.

PrivExe [39] provides an operating system service for
private execution. Virtual Ghost [19] leverages LLVM com-
piler [34] to instrument OS and checks OS code in run-time.
They all need to modify or re-compile OS kernel. In contract,
AppSec protects full application from hostile OS transpar-
ently and excludes OS kernel from our TCB.

TrustVisor [36], Intel SGX instruction set [37], SICE [11]
and Fides [44] partition an application into “secret” part and
“public” part. They ensure that the secret part can only be
accessed by the code in public part and the public part can
only be invoked through the specified APIs. One significant
drawback of these work is that the protected applications
need to be modified or their architectures need to be re-
designed. That need enormous efforts and is not available
for some legacy commodity software. In contract, AppSec
provides a whole application protection. AppSec does not
need to re-design legacy software or re-compile them which
is very important in practice.

Similar to AppSec, Overshadow [16], SP3 [48], Ink-
Tag [31] and Chaos [15] use a virtual machine monitor to
isolate the security sensitive application from OS. The main
idea of these work to protect the memory data is using the
hardware virtualization to intercept kernel memory access
and encrypt all data flowing to OS kernel. As we stated in
Section 1, this arbitrary encryption would make applications
unusable. Besides, some of them needs to instrument OS
kernel or leverage the existing hypervisor paravirtualization
interfaces [15, 31]. What’s more, all of them compile ap-
plications statically to avoid the complexity of DSOes. In
contract, AppSec introduces a safe loader to protect DSOes
which avoids compiling applications statically. Kernel mem-
ory access is verified according to application’s intention

which avoids the un-usability caused by encrypting all data
arbitrarily. AppSec provides a secure human-machine inter-
action channel to enforce the security of input/output data.
Besides, all of these work is based on sophisticated VMMs
like VMware, Xen which have a very large performance
overhead and are prone to be attacked [1, 4]. AppSec uses a
lightweight hypervisor whose interfaces have been verified.

Haven takes a further step by using Intel SGX instruc-
tion to protect a whole application without any modifica-
tion to protected application binary [13]. AppSec can lever-
age its LibOS mechanism to prevent against malicious be-
haviours like Iago attacks. However all human-machine in-
teraction data is still unsafe and we have not found how
Haven deal with the problems caused by DSOes. Another
major advantage of AppSec is that AppSec introduces a
trusted human-machine interaction channel to enforce the
security of human-machine interactions. This is absence in
previous related work.

8.2 Trusted Human-Machine Interaction
Zhou [50] and Dunn [23] use hypervisor to enforce human-
machine interaction. However, they either need to modify
device drivers to eliminate any dependencies on the com-
modity OS or hinder applications communicating with oth-
ers.

DriverGuard [17] provides a trusted I/O flow between
commodity peripheral devices and some privileged code
blocks in device driver. UTP [25] uses the TPM chip to
build a uni-directional trusted path. It ensures that user’s
transactions is indeed submitted by a human operating the
computer. However, they all rely on the security of OS and
the innate problem of X window system still expose X re-
source to risk.

EROS [42] Window System is a trusted window system
for the EROS capability-based operating system. It is built
on the primitive mechanisms of EROS operating system and
is capable of enforcing mandatory access control. However,
a compromised OS can still access all human-machine inter-
action devices to steal user privacy and the special operating
system requirement makes it difficult to use for most tradi-
tional security sensitive application.

Compared to these work, AppSec first isolates all human-
machine interaction devices from compromised OS kernel.
On top of that, AppSec further proposes a privilege-based
window system. It ensures that normal application cannot
access the security sensitive application’s X resource.

9. Conclusion
AppSec represents a significant step forward in protecting
security sensitive applications’ private data on an untrusted
operating system. By protecting the code integrity of DSOes
and tracking pages skillfully, we enable sensitive applica-
tions to use AppSec transparently. AppSec protects the se-
curity of memory private data by verifying kernel mem-

197

ory access according to application’s intention. With human-
machine interaction devices isolation and a privilege-based
windows system, AppSec addresses the human-machine in-
teraction issues such as keyboard interception and screen
capture. The major advantages of AppSec are that AppSec
secures both the memory data and human-machine interac-
tion data and all protections provided by AppSec do not need
to re-design, modify or recompile applications and OS. The
prototype shows that AppSec only incurs 6%∼10% perfor-
mance overhead.

Acknowledgments
This research was supported in part by NSFC under Grant
No.(60933003, 61272460), Ph.D. Programs Foundation of
Ministry of Education of China under Grant No. (201202011
10010) and 863 Program (2012AA010904).

References
[1] Xen Arbitrary Code Execution. URL http://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2014-3124.

[2] Google V8 Benchmark Suite. URL http://v8.

googlecode.com/svn/data/benchmarks/v7/run.html.

[3] The connection methods to the X server. URL https:

//www.debian.org/doc/manuals/debian-reference/

ch07.en.html#_the_connection_methods_to_the_x_

server.

[4] VMWare Arbitrary Code Execution. URL http:

//cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2014-1209.

[5] PCI Local Bus Specification. URL http://www.math.uni.

wroc.pl/~p-wyk4/so/pci23.pdf.

[6] Trusted Platform Module (TPM) Summary. URL http:

//www.trustedcomputinggroup.org/resources/

trusted_platform_module_tpm_summary.

[7] X Window System. URL http://en.wikipedia.org/

wiki/X_Window_System.

[8] INTEL R© 64 AND IA-32 ARCHITECTURES SOFTWARE
DEVELOPER’S MANUAL. Instruction Set Extensions Pro-
gramming Reference. Intel Corporation, January 2013.

[9] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-
flow integrity principles, implementations, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 13(1):4, 2009.

[10] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
cipherbase. In 6th Conference on Innovative Data Systems
Research, Jan. 2013.

[11] A. Azab, P. Ning, and X. Zhang. SICE: a hardware-level
strongly isolated computing environment for x86 multi-core
platforms. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 375–388.
ACM, 2011.

[12] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch,
B. Bond, R. Olinsky, and G. C. Hunt. Composing os exten-
sions safely and efficiently with bascule. In Proceedings of the

8th ACM European Conference on Computer Systems, pages
239–252. ACM, 2013.

[13] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with haven. In Proceedings of the
11th USENIX conference on Operating Systems Design and
Implementation, pages 267–283. USENIX Association, 2014.

[14] A. D. Central. BIOS and Kernel Developer’s Guide for AMD
Family 15h Models 00h-0Fh Processors.

[15] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, and
W. Mao. Tamper-resistant execution in an untrusted operating
system using a virtual machine monitor. 2007.

[16] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam, C. Wald-
spurger, D. Boneh, J. Dwoskin, and D. Ports. Overshadow:
a virtualization-based approach to retrofitting protection in
commodity operating systems. In ACM SIGPLAN Notices,
volume 43, pages 2–13. ACM, 2008.

[17] Y. Cheng, X. Ding, and R. H. Deng. Driverguard: A fine-
grained protection on i/o flows. In Proceedings of European
Symposium on Research in Computer Security, pages 227–
244. Springer, 2011.

[18] I. Corporation. Lagrande technology preliminary architecture
specification. Intel Publication, (D52212), 2006.

[19] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost: Pro-
tecting Applications from Hostile Operating Systems. In Pro-
ceedings of the nineteenth international conference on Archi-
tectural Support for Programming Languages and Operating
Systems. ACM, 2014.

[20] Y. Dai, Y. Shi, Y. Qi, J. Ren, and P. Wang. Design and
verification of a lightweight reliable virtual machine monitor
for a many-core architecture. Frontiers of Computer Science,
pages 1–10.

[21] Y. Dai, Y. Qi, J. Ren, Y. Shi, X. Wang, and X. Yu. A
lightweight VMM on many core for high performance com-
puting. In Proceedings of the 9th ACM SIGPLAN/SIGOPS
international conference on Virtual Execution Environments,
pages 111–120. ACM, 2013.

[22] G. Duc and R. Keryell. Cryptopage: an efficient secure ar-
chitecture with memory encryption, integrity and informa-
tion leakage protection. In Computer Security Applications
Conference, 2006. ACSAC’06. 22nd Annual, pages 483–492.
IEEE, 2006.

[23] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spot-
less machine: Protecting privacy with ephemeral channels. In
Proc. of the USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2012.

[24] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An operat-
ing system architecture for application-level resource man-
agement, volume 29. ACM, 1995.

[25] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and
M. Winandy. Uni-directional trusted path: Transaction
confirmation on just one device. In Dependable Systems
& Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on, pages 1–12. IEEE, 2011.

[26] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the xen virtual

198

machine monitor. In 1st Workshop on Operating System and
Architectural Support for the on demand IT InfraStructure
(OASIS), pages 1–1, 2004.

[27] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted comput-
ing. In ACM SIGOPS Operating Systems Review, volume 37,
pages 193–206. ACM, 2003.

[28] C. Gebtry, S. Halevi, and N. P. Smart. Homomorphic eval-
uation of the aes circuit. In 32nd International Cryptology
Conference, 2012.

[29] C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[30] V. George, T. Piazza, and H. Jiang. Technology Insight:
Intel c© Next Generation Microarchitecture Codename Ivy
Bridge, 2011. URL www.intel.com/idf/library/pdf/

sf_2011/SF11_SPCS005_101F.pdf.

[31] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure Applications On An Untrusted
Operating System. In Proceedings of the eighteenth interna-
tional conference on Architectural support for programming
languages and operating systems, (ASPLOS), pages 265–278.
ACM, 2013.

[32] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kguard:
Lightweight kernel protection against return-to-user attacks.
In Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, Berkeley, CA, USA, 2012. USENIX
Association.

[33] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
Ret2dir: Rethinking kernel isolation. In Proceedings of the
23rd USENIX Conference on Security Symposium, SEC’14,
2014.

[34] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Code
Generation and Optimization, 2004. CGO 2004. International
Symposium on, pages 75–86. IEEE, 2004.

[35] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. ACM SIGPLAN Notices, 35
(11):168–177, 2000.

[36] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attesta-
tion. In IEEE Symposium on Security and Privacy (SP), pages
143–158. IEEE, 2010.

[37] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innova-
tive instructions and software model for isolated execution. In
Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, page 10.
ACM, 2013.

[38] R. Nikolaev and G. Back. Virtuos: an operating system with
kernel virtualization. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP
2013), pages 116–132. ACM, 2013.

[39] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda.
PRIVEXEC: Private Execution as an Operating System Ser-

vice. In IEEE Symposium on Security and Privacy. IEEE,
2013.

[40] R. A. Popa, C. M. Redfield, N. Xeldovich, and H. Balakrish-
nan. Cryptdb: Protecting confidentiality with encrypted query
processing. In 23rd ACM Symposium on Operating Systems
Principles, pages 85–100, 2011.

[41] M. Seaborn. Plash: tools for practical least privilege, 2008.
URL http://plash.beasts.org/index.html.

[42] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the eros trusted window system. In Proceedings of
the 13th conference on USENIX Security Symposium-Volume
13, pages 12–12. USENIX Association, 2004.

[43] L. Soares and M. Stumm. Flexsc: flexible system call schedul-
ing with exception-less system calls. In Proceedings of the 9th
USENIX conference on Operating systems design and imple-
mentation, OSDI. ACM, 2010.

[44] R. Strackx and F. Piessens. Fides: Selectively hardening soft-
ware application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM conference on
Computer and Communications Security (CCS 2012), 2012.

[45] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. De-
vadas. AEGIS: architecture for tamper-evident and tamper-
resistant processing. In Proceedings of the 17th annual in-
ternational conference on Supercomputing, pages 160–171,
2003.

[46] S. D. Tetali, M. Lesani, R. Majumdar, and T. Millstein. Mr-
crypt: static analysis for secure cloud computations. In Pro-
ceedings of the 2013 ACM SIGPLAN international conference
on Object oriented programming systems languages & appli-
cations, pages 271–286. ACM, 2013.

[47] A. Virtualization. Secure Virtual Machine Architecture Ref-
erence Manual. AMD Publication, (33047), 2005.

[48] J. Yang and K. Shin. Using hypervisor to provide data secrecy
for user applications on a per-page basis. In Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, pages 71–80. ACM, 2008.

[49] M. Zhang and R. Sekar. Control flow integrity for cots bina-
ries. In Usenix Security, pages 337–352, 2013.

[50] Z. Zhou, V. Gligor, J. Newsome, and J. McCune. Building ver-
ifiable trusted path on commodity x86 computers. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages 616–630.
IEEE, 2012.

199

