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Abstract—
We present DAPPER, a lightweight system that transforms

the execution state of a live process into a new process state
in a secure and extensible manner. DAPPER checkpoints a live
process into a process image using Linux’s CRIU mechanism,
rewrites the image with an updated execution state, and re-
stores program execution. In particular, DAPPER can restore
the program execution on a CPU with a different architecture
by rewriting the process’s architecture-specific execution state.
DAPPER transforms the process externally and only requires
inserting a small amount of compile-time metadata to guide the
state transformation. Therefore, DAPPER brings a smaller attack
surface for the transformed program and can be extended for
different scenarios in contrast to existing techniques. We build
and evaluate a prototype of DAPPER using server applications
and benchmark suites. Our evaluation shows that DAPPER can
be extended and used in many different scenarios, such as
improving servers’ energy efficiency by live program migration
on heterogeneous processors and enhancing program security
with dynamic randomness of the program states.

Index Terms—Process state rewriting, heterogeneous proces-
sors, live migration

I. INTRODUCTION

Runtime software state transformation and relocation are
used in several real-world scenarios. Many research efforts
transform and relocate a running program for live migra-
tion [11], [50], [57], dynamic software patching [21], [34],
and program layout re-randomization [7], [59], to name a
few. For example, live process or virtual machine (VM)
migration supports more efficient load balancing in the data
center environment and improves infrastructure maintainabil-
ity. A typical live migration system transfers the application’s
memory, storage, and network connectivity from the original
machine to the destination [57]. The migrated program keeps
the same program state as before live migration.

Recently, there is an emerging trend of ISA-heterogeneity
in cloud systems and high-end servers. For example, Ama-
zon [63] and Oracle [41] recently introduced ARM-based
servers in their cloud platforms, which are traditionally made
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up of x86-based servers, to provide low-cost computing capa-
bilities. Emerging high-end I/O devices for x86-based servers
such as SmartNICs [36], [37] and SmartSSDs [35], [46]
include full-featured SoCs with ARM-based CPUs. These
works use different ISAs to improve resource utilization
by dynamically relocating computation to a more suitable
architecture [5], [40], [48]. For example, HIPStR [47] dy-
namically migrates program execution across ISA-different
CPUs to increase entropy; HEXO [40] offloads unikernelized
computing workloads to embedded devices to save cost and
reduce energy usage. These works use complex software
stacks. For example, HIPStR combines the native compilation
and dynamic binary translation to convert register states across
ISAs [47]. Such complex software subsystems add a burden
to software deployment and also increase the attack surface.

This paper presents DAPPER, a lightweight framework that
dynamically updates the architectural and program state of
running processes. DAPPER enables transforming the program
state from an original process to a new one to adapt to
the changing and diversified hardware/software environment.
DAPPER utilizes Linux’s CRIU mechanism [15] for check-
pointing and restoring a process. DAPPER takes a CRIU
snapshot and rewrites the snapshot to update the program
execution state according to a user-defined policy. Example
policies include changing the program state (i.e., registers
and memory) so that the process is restored to a different
architecture, or periodically re-randomizing the function call
stack by changing the layout of each function stack frame.
Other possible policies can be live software updates [21] or
dynamic software feature customization [25], to name a few.

We build a prototype of DAPPER and evaluate it using
real-world applications, such as the Nginx web server, the
Redis key/value store and benchmark suites, including the
NAS Parallel Benchmark (NPB) suites [61], the Linpack
benchmark [56] and the PARSEC benchmark [6]. We demon-
strate that DAPPER can dynamically rewrite the process state
to relocate the process on CPUs of different architectures1.
Our evaluation shows that DAPPER can dynamically relocate
running programs across machines of different ISAs in 600
ms to 2.3 seconds, depending on the application’s memory
footprint size at the checkpoint. Using this cross-architecture

1A demo can be found at https://github.com/dapper-project/demo.
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process rewriting capability, DAPPER can improve the energy
efficiency for HPC workloads by up to 39% when dynamically
evicting jobs to low-power Raspberry Pi boards. We also show
that DAPPER allows periodic re-randomizing of the function
call stack, defeating several classes of CVEs [13], [24], [42].

The paper’s contributions include:
• We propose a process rewriting mechanism for runtime

architectural and program state transformation;
• We present the design and implementation of DAPPER, a

modular and extensible framework for live updating the
runtime program state; DAPPER will be open-sourced af-
ter publication: https://github.com/dapper-project/dapper;

• We evaluate DAPPER ’s effectiveness and efficiency using
real-world applications and benchmark suites and show
that DAPPER can be used in multiple scenarios, such
as consolidating workload on heterogeneous CPUs and
improving software runtime security.

II. BACKGROUND AND MOTIVATION

Runtime program state rewriting allows changing the inter-
nal states of a program at runtime. Examples of such systems
allow the dynamic change of the address space layout [7],
[59], updating register values and the architecture state [47],
[48], [52], dynamic binary translation (DBT) [51] or dynamic
software update (DSU) [21], [34], among others. There is
a trade-off between the complexity of the system and the
functionalities these systems can provide. Some existing ap-
proaches heavily rely on a complex software stack, such as
the modified operating system kernels or system/architecture
simulators [5], [47], to obtain and convert the runtime program
state. The complication of such systems burdens software
deployment, preventing them from being deployed in a real-
world environment. On the other hand, systems that transform
program states in the user-space [7], [34], [59] may not
extend themselves to a more complicated task at the OS or
architecture level. In contrast, DAPPER is lightweight and
extensible (Fig. 1). DAPPER was built on top of existing and
widely used software stacks. The software stack modification
is minimal: we mainly extended a CRIU image examination
tool [16] to rewrite the process image, leaving the core
software stack untouched; yet, DAPPER can rewrite program
states for different purposes.

Extensibility
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Fig. 1. A comparison of DAPPER to other competitor techniques in complexity
and extensibility.

Live migration [57] is a technique that moves applica-
tion instances (i.e., processes or containers) across different

machines without disconnecting networked clients. The tech-
nique has primarily been used for fault-management, server
maintenance (e.g., OS kernel update), and load balancing in
datacenters. CRIU [15] is a Linux mechanism that supports
process/container live migration. To migrate a process, CRIU
dumps a process’s state into a set of image files, which are
then transferred over a network connection to a destination
machine. These files are then used to restore the process’s
execution on the destination machine. Most CRIU-generated
images are JSON objects encoded as byte vectors using
Google’s protocol buffer format (protobuf) [23]. The ex-
ceptions are raw image files that contain the process’s memory
snapshot at the checkpoint. CRIU also includes a tool called
CRIT [16], which can be used to examine the process images
in the protobuf format, decode them to human-readable
JSON files (decode), and encode them back to protobuf
(encode). DAPPER extends CRIU/CRIT to rewrite process
images for different types of dynamic software transformation.

III. SYSTEM DESIGN AND IMPLEMENTATION

Fig. 2 shows DAPPER’s high-level overview. Similar to most
existing dynamic program state transformation systems [5],
[7], [10], [34], [52], [59], DAPPER also requires inserting
(minimal) metadata into the program binary to guide runtime
state transformation (Section III-A). Once the program is
instrumented with the metadata and is spawned as a process,
DAPPER utilizes the checkpoint and restore mechanism to
suspend the process, rewrite the process state, and restore
the process execution (Section III-B). The transformed process
can continue executing on a different (or the same) machine,
depending on the user-defined transformation policy and the
requirement. DAPPER can also transform the process images
into a new process that can be restored to run on a different
architecture while retaining the same program functionalities
and execution context (Section III-C).

DAPPER allows end-users to define different transformation
policies. For example, end-users can rewrite the architecture
state to enable cross-architecture process migration to consol-
idate heterogeneous computing resource utilization [40]. They
can also shuffle the internal program state to implement a
code/data re-randomization system [7], [10], [59]. DAPPER
allows end-users to control when the transformation happens.

A. Metadata for Runtime Process Transformation

DAPPER transforms a program at runtime by rewriting
the process image. Similar to existing approaches [7], [10],
[31], [52], [59], DAPPER requires end-users to specify the
transformation policy and insert metadata into the binary. We
leverage metadata generated from compiler toolchains such
as debugging information (i.e., DWARF [12]) and live value
records (i.e., LLVM stack maps [29]) to instrument the binary.
DAPPER uses this metadata to locate code and live values for
runtime program state transformation.

To support cross-architectural state transformation, DAPPER
requires the target process to be paused at architecture-agnostic
equivalence points [49]. An equivalence point allows program

https://github.com/dapper-project/dapper
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Fig. 2. DAPPER’s system architecture and workflow. The DAPPER runtime controls the process execution; the DAPPER process rewriter transforms the process
image with different transformation policies.

states (e.g., register values, stack frames) to be safely converted
across different architectures. Similar to cross-architecture
dynamic binary translation (DBT) techniques [51], instructions
and register values can only be transformed at basic block
and function boundaries. In compiler design, an architecture-
independent instruction (e.g., an LLVM intermediate repre-
sentation or IR [27]) is typically translated to several machine
instructions, necessitated in part because an unlimited number
of virtual registers in the IR form must be mapped to a fixed
number of physical registers available for the target machine.
Since this mapping is architecture-dependent and the compiler
backend may produce different machine instruction sequence
for different architectures, the program state may not have
consistent memory semantics across different architectures at
an arbitrary machine instruction besides the boundaries of
basic blocks and functions [48]. In current design, DAPPER
considers function boundaries as equivalence points and sus-
pends the target process only at these locations.

Other program state transformation systems may not require
such restrictions for suspending the process. For example, a
code/stack re-randomization system may pause the process at
arbitrary locations but keep the current function call context
unchanged [59]. We demonstrate the process-level program
state rewriting capability by extending DAPPER for a stack
re-randomization system. In particular, we reuse the metadata
inserted for architectural state transformation (i.e., the stack
map [29]) to shuffle the stack layout. In compiler design, a
stack map records the location of live values at an instruction
address [58]. The live values indicate the program variables
that have downstream uses. Therefore, the live values give us
enough information for transforming the valid program vari-
ables (typically stored in registers and on the call stack) upon
resuming program execution. The live values are architecture-
independent, as they are calculated and generated by the
compiler’s middle-end passes [29].

We also instrument an LLVM intrinsic function at each
equivalence point to generate the stack map records. An
LLVM intrinsic is a built-in function in the compiler backend
that takes advantage of hardware capabilities for performing

specialized operations [28]. We extend the LLVM compiler
to automatically instrument the function boundary and add
the LLVM intrinsic function to generate the stack map into
an ELF section. DAPPER’s process rewriter takes advantage
of the stack map section in the binary to transform the
architectural state and stack layout (Section III-C). Although
we currently only rewrite the stack object locations and the
architectural state, we believe that DAPPER can also support
other program state transformation strategies, such as dynamic
software update and dynamic code customization.

B. The DAPPER Runtime

After the program is instrumented with metadata, we launch
the application under the DAPPER runtime. The DAPPER
runtime gives end-users control over how and when to apply
transformation policies to the target process. As previously
mentioned, we pause the process and rewrite it only at
equivalence points. A straightforward approach for pausing the
process is to insert a debug instruction2 at an equivalence point
ahead of the program execution counter. This is similar to how
a debugger pauses a process for debugging purposes. However,
dynamically inserting the debugging instruction brings poten-
tial synchronization challenges: it is difficult to know where is
the next equivalence point given a program counter. Moreover,
the signal generated by a breakpoint instruction will pause all
threads at the same time [54]. As a result, there is no guarantee
for other threads to stop at equivalence points, which will
likely cause a non-transformable state for cross-architecture
state transformation. To solve this problem, DAPPER instru-
ments a simple checker function for each equivalence point
and collaborates with a multi-threaded code monitor to pause
and transform the program into a transformable state.

Fig. 3 illustrates how the DAPPER runtime pauses a multi-
threading program. Each equivalence point is instrumented
with a checker function that waits for the signal to trans-
form the process. When the runtime raises a signal for
cross-architecture transformation, the checker function raises

2Examples include the int3 instruction (0xCC) on the x86 architecture
and the instruction of bytes 0xD4200000 on the ARM64 architecture.
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Fig. 3. DAPPER’s runtime monitor for interrupting multi-threading applica-
tions.

a SIGTRAP exception by touching a breakpoint instruction
( 1 in Fig. 3). Again, simply pausing the whole process
will cause other threads to stop at wrong places. DAPPER
solves this problem by creating multiple helper monitors and
dynamically attaching a helper monitor (implemented with
ptrace [33]) to each thread ( 2 in Fig. 3). The Linux
ptrace interface allows attaching each thread to potentially
different tracers [33]. Therefore, even if one thread touches an
equivalence point, other threads can continue executing until
touching the closest equivalence point under the control of the
per-thread ptrace monitor ( 3 in Fig. 3).

There might be a case of one thread holding a lock reaching
a breakpoint causing other threads never to reach an equiva-
lence point. In such cases (e.g., pthread_mutex_lock()),
we temporarily disable the check code logic in the checker
function on entering the critical region and re-enable the
check code logic after leaving the critical region. As a result,
whenever one thread holds a lock, other threads will not be
allowed to pause at equivalent points. Other thread synchro-
nization mechanisms, such as pthread_join(), may cause
the main thread to be suspended at a location other than the
semantic equivalence point. In such cases, once all children
threads are paused, the runtime monitor rollbacks main thread
execution context to an equivalence point right before the
thread synchronization primitive (with setjmp()). Through
this way, DAPPER ensures all threads are paused at semantic
equivalence points.

Once the monitor seizes all threads, the DAPPER runtime
sends a SIGSTOP to the process to completely pause its state.
Next, the DAPPER runtime invokes CRIU [15] to dump the
process into a process image, and then starts rewriting the
image. To reduce the time for storing/restoring a process image
to/from the hard disk, we checkpoint the process into an in-
memory filesystem, i.e., tmpfs [45].

C. Process Rewriting

DAPPER’s process rewriter leverages the CRIU checkpoint
and restore mechanism to suspend the process for a short
period of time and rewrites the CRIU-dumped process im-
ages to diversify the program state. By rewriting the (static)
process image, we avoid the complications of dealing with

potential race conditions that manifest in existing dynamic re-
randomization systems [7], [10], [59].

The process rewriter supports transforming several process-
level states, including updating memory page contents, chang-
ing the architecture-specific register descriptions and values,
and rewriting the call stacks. For example, to shuffle the stack
slot layout, the process rewriter locates the call stack memory,
unwinds the stack, and rewrites stack frames. DAPPER also
allows end-users to transform architecture-related process
states, such as the register set and code pages. Since code
pages can be loaded from the program binary, CRIU does
not dump all code pages but only the execution context (i.e.,
one or two code pages pointed by the program counter) into
image files [15]. Therefore, the process rewriter replaces the
current execution context with the corresponding code pages
and updates the memory-mapped executable file in the ELF
format for the target architecture. As a result, the new process
will load the target architecture’s code pages when the process
is restored on that architecture.

Similarly, the process rewriter also transforms the register
set. Since a target process is only paused at equivalence
points, the process rewriter reads the stack map records at the
checkpoint and translates the concrete register values from the
source architecture into those of the target architecture. Fig. 4
shows a simple example of the stack map and how to translate
live values using the stack map record. The function add(int
a, int b) has two variables that are live on entering the
function. The stack map records show that variables a and
b are in register 3 and 14 on the x86-64 platform and are
in register 20 and 19 on the aarch64 platform. Therefore,
the DAPPER runtime pauses the process on entering function
add(int a, int b) and rewrites live values in registers
to translate the process state. Here the register numbers are
encoded under the DWARF specification [12]. Note that the
physical register numbers can differ between a RISC architec-
ture CPU and a CISC CPU.3 Moreover, a live value stored in a
register on one architecture may be emitted into the call stack
on another architecture. To solve this problem, we leverage the
stack unwinding and rewriting technique to update the correct
live values if they are on the stack.

Thread Local Storage (TLS): The symbol mapping for TLS
structures is kept identical by our compiler for each target
ISA. However, the offset from the start of the TLS structure
referenced by the architecture-specific TLS register (the FS
base register in x86-64 and the TPIDR register in aarch64)
is differently implemented within libc for each architecture.
In DAPPER’s design, we simply update the offset values while
transforming the state to handle this TLS issue.

DAPPER’s process rewriting technique differs from that of
dynamic binary instrumentation (DBI) [9], [30] and dynamic
binary transformation (DBT) [51] techniques. Both DBI and
DBT techniques use a code cache to store the transformed
code instructions and later execute them on the local host

3The RISC architecture simplifies hardware design by composing several
simple instructions to implement a complex instruction of a CISC architecture.
Thus, RISC architectures often tend to have more general-purpose registers.



int add(int a, int b)

{

return a + b;

}

int main(int argc, char **argv)

{

int a = 10;

int b = 25;

int c = add(a, b);

printf(“%d+%d = %d\n”, a, b, c);

return 0;

}

Stackmap v3: 2 functions, 0 constants, 7 call sites

Function 0: address=0x501030, stack size=40 …

Function 1: address=0x5010a0, stack size=72 …

Call site 0: function 0, offset @ 25, 2 locations …

Location: size: 4, in register 3

Location: size: 4, in register 14

… …

Stackmap v3: 2 functions, 0 constants, 7 call sites

Function 0: address=0x501030, stack size=48 …

Function 1: address=0x5010a0, stack size=80 …

Call site 0: function 0, offset @ 36, 2 locations …

Location: size: 4, in register 20

Location: size: 4, in register 19

… …

x86-64

aarch64

LLVM Stackmap Intrinsic

Fig. 4. Live value records and translation for cross-architecture rewriting
using the stack map.

machine. These techniques are also designed to translate code
of a different architecture on a single machine. In contrast,
DAPPER rewrites the process by reloading code pages and
rewriting process states. Thus, it can transform a whole process
across machines of different architectures.

D. Implementation

DAPPER’s implementation includes a modified CRIU (ver-
sion 3.15) [15] and an extended LLVM compiler toolchain
(version 9.0) [27]. We implemented DAPPER’s runtime mon-
itor by extending the Linux ptrace interface. The runtime
monitor invokes the CRIU/CRIT command line APIs to pause,
transform, and restore the process in a multi-ISA, multi-node
cluster environment.

1) Compiler Extension: We use LLVM/Clang to lower
the application source code into LLVM IR code. We then
implement an LLVM middle-end pass that analyzes the
IR code and inserts equivalence points (i.e., at all func-
tion boundaries). This pass also inserts intrinsics (i.e.,
llvm.experimental.stackmap) in the LLVM IR code
to generate stack map records at all the equivalence
points [29]. We also modify LLVM/Clang to generate two
ELF binaries, one for the x86-64 architecture and one for
the aarch64 architecture, from the same application source
code. This compilation process ensures that the machine code
for different architectures is derived from the same LLVM
IR code. Similar to existing works on process migration in
heterogeneous-ISA systems [4], [5], [48], we also modify the
GNU gold linker to align the addresses of all symbols (i.e.,
functions, global data, static data) across the two binaries by
padding nop instructions at the end of each symbol. This
essentially creates a unified global virtual address space across
all architectures, ensuring that all symbols have the same
address across all architectures. Thus pointers (to symbols)
are valid after migrating a process to a different architecture.

Our middle-end pass also inserts a dapper_checker()
function at each equivalence point for pausing the process
(threads) into a transformable state. This function reads a
global flag and checks whether an end-user has initiated the
process transformation. Once the flag is set, it raises the
SIGTRAP signal and thereby pauses the thread. Note that an
attacker cannot maliciously leverage a SIGTRAP signal for

launching an attack because the runtime monitor also checks
the program state against the stack map and ensures that the
program is paused only at an equivalence point.

2) Runtime for Process Rewriting:
a) ptrace-based monitor: As previously discussed in

Section III-B, DAPPER’s runtime handles the SIGTRAP ex-
ception by attaching ptrace-based monitors to each thread
and pauses all threads at equivalence points where they can be
transformed. ptrace is a system call implemented in Unix-
like systems which allows a process (hereby referred to as
the tracer) to control the execution of another process (hereby
referred to as the tracee) [33]. The tracer process can also read
and manipulate the tracee process’s memory and registers.

The monitor first gathers the thread ID information from the
/proc file system on receiving the process rewriting request.
It then iterates through the symbol table of the target processes
and reads the stack map records. Next, the monitor attaches
itself to the target process using the PTRACE_ATTACH
command and changes the value of the transformation flag
using the PTRACE_POKEDATA command. It then spawns
one thread for each tracee thread. Each monitor thread now
waits for its respective tracee thread to raise a SIGTRAP
signal. Once all threads are paused, the monitor thread uses
PTRACE_DETACH to detach from the tracee threads. The
monitor’s main thread now sends a SIGSTOP signal to the
process to be transformed. The process is now ready to be
dumped with CRIU.

b) CRIU modification: The runtime monitor is also re-
sponsible for calling our extended CRIU API to checkpoint
and transform the process. CRIU checkpoints the target pro-
cess and dumps it into several image files, primarily in the
protocol buffer (protobuf) format [23]. Recall that CRIU’s
CRIT tool provides an API to decode, encode and print
the CRIU process image. In DAPPER’s implementation, we
extensively extend this interface for rewriting a live process.
Specifically, our extended CRIT API rewrites the following
CRIU images:
core and files image files. The core.img file contains

process information including thread information (register de-
scriptions and values) and task states (signals and thread-local
storage), among others. The files.img file contains opened
files by the target process. For example, the binary name
and location are saved in files.img. When transforming a
process for executing on a different architecture, we first need
to update the process information and the executable location
to the corresponding architecture. DAPPER’s process rewriter
modifies these files to translate all architecture-related registers
and update the ELF binary location.
pages and pagemap image files. The pages.img

file contains raw page contents of the process, while the
pagemap.img file contains information about which virtual
memory regions are populated with data. Specifically, the
pages.img file contains all populated data pages and one
or two code page(s). These code pages contain the execution
context pointed by the program counter. CRIU discards other
code pages when checkpointing the process since those code



pages can be directly loaded from the binary when handling
page faults. The pagemap.img file contains a list of en-
tries describing the mapped memory information. Each entry
describes the address of each VMA, the number of pages
populated, and the VMA flags. The pagemap.img file can
be used as a dictionary to index the raw pages in pages.img.

To transform processes across architecture boundaries,
DAPPER has to change the architecture-specific states of the
process image into a form that can be restored on the target
architecture. CRIU dumps the register values of each thread in
a separate file (core-<thread id>.img) and dumps raw
memory bytes in one consolidated file (pages-<N>.img).
The DAPPER’s stack and register transformation API is a set
of file reads and writes which set the live values within the
memory dump. The API uses stack map metadata generated
by the compiler for transformation. We implement the state
transformation logic as a crit sub-command.

The transformation of register values is straightforward as
the stack map metadata generated for each target ISA serves as
a one-to-one mapping and the respective values can be copied
from the source image files to the destination image files. To
transform the stack, DAPPER first locates the stack by reading
the stack pointer value (sp register in core.img) and the
stack virtual memory (retrieved from the pagemap.img file).
DAPPER unwinds the outermost stack frame inwards to update
each frame. It reads the stack map metadata and copies the
stack values from the source to the destination process image.
While unwinding the frames, it also inserts the pointer into the
caller’s frame and the function’s return address into the stack
frame. DAPPER follows the destination architecture’s ABI and
retains the register-save procedure. If it encounters a pointer
to the source stack, it implements a logic to map each live
stack pointer to its respective stack allocation. Specifically,
DAPPER first copies the stack allocation to its designated
position in the destination stack and then generates a pointer
to the stack allocation within the stack. Note that the virtual
memory layout for the code and data section is already aligned
for both ISAs (Section III-D1). Therefore, references other
than the ones to the stack are directly copied from source to
destination. Finally, DAPPER replaces the code page(s) with
the corresponding code page(s) of the destination architecture.

Other transformation logics can be similarly implemented.
For example, we use DAPPER to implement a stack shuffling
system to defeat stack-based attacks. We leverage the static
binary instrumentation (SBI) on the checkpointed process
image for stack shuffling. In addition, we leverage existing
open-source projects (e.g., capstone [20]) for code disassembly
and re-assembly. DAPPER allows us to easily identify the
function call stack frames, permute the candidate stack objects,
and update the code pages and stack map records to reflect the
new permutation stack allocation offset.

3) Optimize the Cross-Node Process Restoration: After
modifying all process images, DAPPER’s runtime restores the
process on the target machine. DAPPER supports two ways
to restore the transformed process image: the vanilla process
restoration and post-copy memory restoration. By default,

CRIU requires an end-user to copy all process images to the
target machine and restores the (transformed) process image
into a running process. However, this can incur a significant
service-interruption latency for applications consuming a large
memory footprint. To solve this issue, CRIU has an option
for post-copy memory migration (or lazy-migration) [14].
Specifically, it does not dump all memory pages but keeps
most of them in memory at the source node; only a minimal set
of task states that starts the process is copied to the destination
node. When the process (restored on the destination node)
starts accessing missing pages, CRIU handles the page faults
through a page server, which retrieves the required page from
the source node and serves it to the target process.

DAPPER also supports cross-architecture post-copy memory
restoration. Specifically, we add an option to the CRIU lazy-
migration handler and additionally dump the stack pages at the
source node. The stack pages and other process image files
mentioned earlier are enough for cross-architecture process
transformation. We also observed significant latency improve-
ment when migrating tasks with large dynamically allocated
heap memory (in Section IV-A).

IV. EVALUATION

We experimentally evaluated DAPPER to understand its
performance, security use cases, and energy efficiency ben-
efits. To demonstrate the usability of DAPPER in a cloud
environment, we conducted our experiments on CloudLab [18]
using m510 and m400 instances. We also measured the power
consumption and energy efficiency when applying DAPPER to
a small cluster of heterogeneous machines. We used an x86-
64 server with an Intel Xeon CPU E5-2620 v4 @ 2.10GHz
(eight cores) and 32 GB RAM, and three Raspberry Pi boards.
The Raspberry Pi is equipped with four cores of Cortex-
A72 (ARM v8) 64-bit SoC @ 1.5GHz and 2 GB RAM. Our
evaluation benchmarks included the NAS Parallel Benchmark
(NPB) suite’s serial version (classes A and B), the Linpack
benchmark, the Dhrystone benchmark, applications from PAR-
SEC benchmark suites that are written in C, the Redis key-
value store (v5.4.0), the Nginx web server (v1.3.9) and a K-
means clustering application. All benchmarks were compiled
using our modified compiler described in Section III-D1.

A. Architecture-Level Program State Rewriting

We first evaluated DAPPER’s performance by measuring
the end-to-end time cost for process rewriting and cross-node
process restoration. As shown in Fig. 5, the whole process
transformation overhead includes the time to pause the process
(checkpoint), rewrite the process image (recode), copy the
transformed process image over the network (scp), and resume
the paused process on the target architecture (restore).

We notice that the checkpoint and restoration time is rela-
tively fast (less than 30 ms). There are two major time costs
in current DAPPER implementation: rewrite process images
and cross-machine copy of the transformed process images.
For example, DAPPER takes an average of 253.69 ms to
rewrite (recode) the checkpointed benchmark processes on the



x86-64 machine, and 1004.91 ms on the aarch64 machine.
This is simply because the x86-64 CPU has stronger micro-
architectural properties (e.g., higher clock speed); the trans-
formation logic is identical. A point to be noted here is that
process transformation to x86-64 or aarch64 architecture can
be carried out on either platforms, i.e., the target architecture is
decided based on the architecture of the executable and not on
the platform where DAPPER is being invoked. Therefore, we
can always transform the process image on the most powerful
machine (i.e., x86-64). The other significant cost comes from
copying process images between different machines. Using the
InfiniBand, it takes about 300 ms to copy process images.
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Fig. 5. Breakdown of DAPPER’s time cost for cross-architecture process
transformation.

We further measured the end-to-end execution time for
DAPPER to relocate multi-threading PARSEC C applications
across machine nodes of different architectures. We compared
the total execution time of using DAPPER against native exe-
cution on each node (Fig. 6). Code execution on the aarch64
machine takes longer than on the x86-64 machine. This is
simply because of the CPU frequency and the processing
speed difference between x86-64 and aarch64 processors. With
DAPPER, the total execution time lies in between the time of
native execution on each node.
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Fig. 6. Total execution time of DAPPER on multi-threading PARSEC C
applications compared with native execution.

a) Lazy-migration.: For applications with larger memory
footprint, DAPPER also provides a post-copy memory mi-
gration mode. It copies a small set of process images and
then starts the program. Therefore, the time used for process

checkpointing and image copying can be significantly reduced
(checkpoint and scp in Fig. 7). The time used to rewrite
the process in lazy-migration mode is slightly better because
it takes less time to search and update the stack memory in
the process image (recode in Fig. 7).
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Fig. 7. Performance comparison of DAPPER vanilla migration v.s. lazy-
migration (x86-64 →arm64, with InfiniBand).

The restoration time measurement is more complicated. The
lazy-migration process restoration immediately restores the
process by loading the minimal execution context (takes about
8 ms). It then starts retrieving pages on demand from the
original node. The time to retrieve pages from the original
node is not easy to measure since that time is concealed in
the post-migration execution. We still managed to estimate this
indirect restoration cost. Specifically, since CG and MG appli-
cations terminate after a while, we can use the total execution
time and subtract the measurable time of checkpoint, scp
and recode to approximate the indirect restoration cost. The
Redis server executes in an infinite loop. Therefore, we cannot
subtract the time cost. Instead, we read the timestamp from
the page server’s log to estimate the indirect restoration cost.

For HPC applications such as CG and MG, we checkpointed
at the beginning, in the middle, and towards the end of the
execution, respectively (init, mid and end in Fig. 7). The
lazy migration performs similarly to the vanilla checkpoint
and restore mechanism when triggering the migration at the
beginning of the execution. However, lazy migration can
perform better after the program has fully launched. This is
possibly due to the more enormous (heap) memory usage after
the program warms up. The overall time is reduced when
applications execute toward the end as it requires fewer mem-
ory pages to transform to finish the program execution. We
observed similar performance patterns transforming a Redis
server with different in-memory database sizes. In general,
lazy migration significantly reduces the restoration latency and
saves the total execution time.

b) Energy efficiency and throughput improvement on a
heterogeneous cluster.: We evaluated energy efficiency of
scheduling jobs on heterogeneous cores by measuring the
number of executed jobs per power unit (kJ). Specifically,



we chose four benchmarks in NPB benchmark suites (class-
B) and created an infinite queue of jobs to simulate a batch-
processing HPC scenario [40]. We experimented on an Intel
Xeon server and three Raspberry Pi boards and measured
the energy consumption of processing the job queue for
30 minutes. The power consumption was measured using
a SURAIELEC Energy Watt Meter. We also implemented
a simple scheduler to evict tasks to one Raspberry Pi or
three Raspberry Pis when the x86-64 server runs out of
CPU resources (more running jobs than CPU cores). Fig. 8
shows this result. When dynamically evicting jobs to low-end
embedded boards, DAPPER improves the energy efficiency for
15% - 39%, depending on the workload types. We observed
that the Raspberry Pi running three job threads consumes
5.1W power, whereas the Xeon server consumes 108W to
run seven threads. The throughput improvement is similar to
energy efficiency: DAPPER improves the throughput for 37%
- 52% on this hybrid-architecture environment. Both results
proved that DAPPER could effectively utilize heterogeneous
compute resources by dynamically and seamlessly relocating
job threads between machine nodes of different hardware
architectures.
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Fig. 8. Energy efficiency and throughput improvement of dynamically
migrating (evicting) processes to Raspberry Pis.

B. Stack State Shuffling

We also implemented a process image rewriting tool using
DAPPER to permute stack allocations in the checkpointed
process image and transformed source binary. Fig. 9 shows
the average time taken for stack shuffling and the breakdown
of the time cost, for all the benchmarks, on both x86-64
and aarch64 architectures. The time taken by the shuffle
stage is proportional to the size of the code section in both
the checkpointed process and the transformed source binary.
DAPPER took an average of 573 ms on x86-64 and 3.2 s
on aarch64 to shuffle the stack allocations and update the
corresponding code pages and stack map records.

We quantify the benefits of DAPPER framework’s stack
shuffling by measuring the permutation entropy. Fig. 10 quan-
tifies the degree of randomness introduced by DAPPER in
terms of bits of entropy for all the benchmarks on the x86-64
and aarch64 servers. Bits of entropy represents the number of
pairwise stack allocation shuffles in a stack frame. DAPPER
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Fig. 9. Breakdown of DAPPER’s time cost for stack shuffling process
transformation.

permutes stack allocations by pairing them based on their
allocation size and then permuting every such pair. Shuffling a
stack frame with n bits of entropy results in 1+(2n−1)!! [55]
possible stack frames, providing an attacker with 1/(2 × n)
probability of guessing a correct stack allocation. For example,
four bits of entropy represent shuffling eight stack allocations,
resulting in 1+(2×4−1)!! = 106 possible stack frames with
1/(2 × 4) = 0.125 probability of guessing the location of a
single stack allocation by the attacker. If a data-oriented attack
(DOA) [22], [24] requires manipulating three stack allocations
for building an expressive payload, the probability of such an
attack succeeding is 0.1253 (i.e., 0.19%).
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Fig. 10. Average bits of entropy introduced by DAPPER due to stack shuffling.

Fig. 10’s y-axis represents the average bits of entropy across
all stack frames in all functions. As the figure shows, DAPPER
introduces 5.76 bits of entropy in Nginx, 5.38 bits in Redis,
and 3.09 bits in the NPB benchmarks on the x86-64 architec-
ture, with an average of 4.74 bits across all benchmarks. On the
other hand, DAPPER introduces 4.02 bits of entropy in Nginx,
3.32 bits in Redis, and 2.65 bits in the NPB benchmarks for
aarch64, with an average of 3.33 bits across all benchmarks.
DAPPER introduces lower entropy on aarch64 than x86-
64 due to the exclusion of load and store pair instructions
accessing the stack frames. Permuting stack offsets of these
stack references require re-encoding these instruction pairs to



single stack reference instructions, which we scoped out in
the current effort. DAPPER’s future implementation can further
increase the entropy by considering these instructions.

Next, we demonstrate the security benefits of DAPPER’s
runtime process rewriting technique by evaluating it against
exploits showcased in DOP [22] and BOPC [24], and known
stack-based CVEs [13], [42]. The Min-DOP exploit in [3] is
a synthetic DOP attack that leverages memory vulnerability
exposed through integer underflow and incorrect type checking
to perform arbitrary memory reads. In addition, it exposes an
out-of-bound stack memory vulnerability to perform arbitrary
memory writes. Finally, the exploit leverages arbitrary memory
read and write capabilities together to construct expressive
payloads to perform privilege escalation and confidential data
leak operations. DAPPER mitigates privilege escalation and
confidential data leak exploits conducted using Min-DOP
through disruption of DOP gadget chaining and dispatching.
DAPPER’s stack shuffling causes the relocation of exploit-
sensitive data around the overflowed buffer, resulting in in-
correct gadget chaining and dispatching. In addition, by trans-
parently transforming the architecture state, DAPPER prevents
the payload from succeeding since live values on the stack and
registers are completely relocated.

The Block-Oriented Programming Compiler (BOPC) [24]
is a tool that automatically synthesizes Turing-complete DOP
payloads expressed by the attacker in a high-level language
called the SPloit language (SPL). We utilize the BOPC tool
on the Nginx web server to generate DOP payloads for exploits
involving arbitrary memory reads and writes, register reads and
writes, and execve shell spawns. Exploits based on memory
or register read payloads exercise DOP gadget chains and
dispatcher blocks to read stack references into registers. In
contrast, exploits based on memory or register write payloads
exercise DOP gadget chains and dispatcher blocks to update
stack references from register values. DAPPER mitigates these
exploits by relocating the stack allocations referred to by
gadget chains or dispatcher blocks. Since DAPPER relocates
data-flow-critical non-control data through stack shuffling,
BOPC exploits are rendered ineffective. Exploits constructed
to spawn a shell first identify basic blocks invoking the
execve() system call and stitch gadgets through dispatcher
blocks to perform memory reads and register writes. DAPPER
mitigates these attacks by disrupting arbitrary memory read
and register write gadgets.

We also evaluated DAPPER against real-world exploits ex-
posed through CVE-2015-4335 which affects the Redis key-
value store (v5.4.0). Our experiment leveraged an existing
exploit framework using redis-rce [43]. The exploit constructs
loadstring ROP gadgets to load unsafe Lua bytecodes and
escape Lua’s enforced sandboxing. The exploit is initiated
through arbitrary memory read and write capability and can
result in exploits such as privilege escalation and confidential
data leaks. DAPPER mitigates these exploits through stack
shuffling which introduces enough entropy to break arbitrary
read and write capabilities required to construct the ROP
gadget chains. We also observed that DAPPER mitigated a syn-

thetic arbitrary code execution exploit on the Nginx web server
(v1.3.9) exposed through a stack buffer overflow vulnerability
recorded in CVE-2013-2028.

C. Comparison against Competitor Techniques

We also evaluated DAPPER against competitor tech-
niques [1], [5], [47], [48], [59], [62] in terms of the attack
surface reduction. The source code of many of them [1], [47],
[48], [59] is not publicly available at the time of this paper’s
writing. Therefore, we measured DAPPER’s attack surface
reduction compared with two open-source works [5], [62].
The Popcorn Linux software stack [5] enables live process
migration in a multi-ISA environment. H-Container [62] ex-
tends Popcorn Linux to a container environment and removes
Popcorn Linux’s specialized kernel from the trusted computing
base (TCB). We measured the attack surface of application
program binaries used in these systems by calculating the ROP
gadget count. Fig. 11 shows the percentage reduction of ROP
gadgets in the benchmark binaries generated through DAPPER
for x86-64 and aarch64, respectively. The baseline is the ROP
gadget count in the binaries generated by Popcorn Linux [5].
DAPPER reduces the number of ROP gadgets by an average of
59.28% for x86-64 and 71.91% for aarch64, respectively. This
is mainly because DAPPER’s lightweight framework rewrites a
target process externally. Thus, the state transformation logic is
not included in the program’s address space and is not exposed
to an external attacker.
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Fig. 11. DAPPER’s attack surface reduction in terms of ROP gadget count
compared to that of Popcorn Linux [5] (and H-Container [62]).

V. RELATED WORK

The first category of related work includes various tech-
niques for (dynamic) software transformation [26]. Software
transformation techniques create program variants that func-
tion the same with different software structures (i.e., code
and/or data layouts). There are many research efforts to
dynamically diversify a program, such as address space layout
randomization (ASLR) [19], runtime code randomization [7],
[59], dynamic software customization and debloating [32],
and data space randomization [1], [8], [31], among others.



An important design problem is ensuring that the transformed
program functions like the original one. To solve this problem,
existing approaches generate auxiliary code or metadata to
facilitate program translation. During runtime, an (inline) code
monitor periodically randomizes the code layout and updates
the auxiliary code and metadata [7], [59]. However, the inline
code monitor can be a potential attack target and often needs
additional security protection [59].

The industry and architecture community have recently ex-
plored utilizing architecture-level diversity to improve energy
utilization, security and reduce data-center costs [5], [38], [40],
[41], [47], [48], [63]. For example, architecture researchers
have shown that single chip multi-ISA CPUs can increase
entropy with inter-ISA program state randomization [47],
[52]. The multi-architecture platforms can also improve power
utilization by scheduling workload based on architecture-
beneficial code regions [5], [40], [48]. Efforts such as HSA
[44], Venkat et al. [48], and Popcorn Linux [5] demonstrated
process migration across ISA-different CPUs by using a com-
mon data format and limiting the amount of ISA/ABI-specific
program state that needs to be converted at runtime, thereby
reducing migration overheads. By using a common address
space layout across different ISAs, these systems align the
memory layout (e.g., stack, heap, TLS), function addresses,
and data addresses in the address space so that the validity of
pointers are preserved across ISAs.

Since machine code must be different for different ISAs,
Popcorn Linux compiles the same program into ISA-specific
binaries and ensures the same starting address for functions in
the .text section of all output binaries [5]. It also assumes that
memory is shared across CPUs of different ISAs and patches
the Linux kernel to map the process address space on shared
memory so that multiple CPUs of different ISAs can host
threads belonging to the same process, similar to CPUs of the
same ISA hosting threads in a multi-core chip. In addition,
cross-ISA transformation logic is injected into the address
space of each process. This logic leverages special systems
calls in the Linux kernel to place values in appropriate registers
before scheduling each thread. This results in a relatively
large attack surface, including the inline code transformer
and extended kernel page-sharing mechanism, which makes
Popcorn Linux unsuitable for practical use [5]. In contrast,
DAPPER obliterates the code transformer from the target
process, significantly reducing the attack surface and enabling
additional security hardening, such as stack shuffling. More-
over, DAPPER is lightweight and has minimal modification on
the system software stack, making it easier to use.

The second category of related work includes (dynamic)
binary translation [17], [53], binary lifting [2], [39], and re-
compilation [2], [60]. Binary translation aims to convert the
code of an executable file into enhanced code with additional
functionalities or new code that can run on another architec-
ture [53]. There exists different techniques for implementing
binary translation. Static binary rewriting inserts instruction
snippets into Commercial-Off-The-Shelf (COTS) binaries for
software security patching, binary repairing, and harden-

ing [17], [60]. Binary lifting and re-compilation leverage
the metadata present in current stripped x86-64 and aarch64
binaries to generate a complete assembly code and further lifts
the assembly into layout-agnostic intermediate representation
for code transformation [2], [39], [60]. For example, McSema
is an executable lifter that translates (i.e., “lifts”) executable
binaries from native machine code to LLVM bitcode [39].
After obtaining the intermediate representation of the binary,
users can apply compiler-based optimization passes on top of
the recovered representation [2]. DAPPER shares similarities
with binary lifting and re-compilation. However, instead of
transforming the binary as in binary lifting and re-compilation,
DAPPER pauses and rewrites the process at runtime. Thus,
DAPPER can be viewed as a mechanism for dynamic software
transformation.

VI. CONCLUSIONS

We presented DAPPER, a lightweight and extensible frame-
work that allows dynamic transformation of the program
and architectural state. DAPPER utilizes the process check-
point/restore mechanism to rewrite the process state on the
snapshotted checkpoint. Compared with existing approaches,
DAPPER is lightweight and can support more generic sce-
narios. We have built a prototype of DAPPER to transform
the program state and architectural states across x86-64 and
aarch64 architectures. Our evaluation shows that DAPPER’s
cross-architecture process rewriting capability can improve the
energy efficiency and throughput for batch processing HPC
workloads by up to 39% and 52% when dynamically evicting
jobs to low-power Raspberry Pi boards. It adds about 4 bits
of program state entropy when rewriting the target process’s
stack slots, defeating several classes of CVEs. Moreover, it
reduces the attack surface by as much as ≈60-72% over prior
arts due to the external process rewriting mechanism.
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