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Abstract
Traditional Virtual Machine Monitor (VMM) virtualizes some
devices and instructions, which induces performance overhead
to guest operating systems. Furthermore, the virtualization con-
tributes a large amount of codes to VMM, which makes a VMM
prone to bugs and vulnerabilities.

On the other hand, in cloud computing, cloud service provider
configures virtual machines based on requirements which are spec-
ified by customers in advance. As resources in a multi-core server
increase to more than adequate in the future, virtualization is not
necessary although it provides convenience for cloud computing.
Based on the above observations, this paper presents an alternative
way for constructing a VMM: configuring a booting interface in-
stead of virtualization technology. A lightweight virtual machine
monitor - OSV is proposed based on this idea. OSV can host multi-
ple full functional Linux kernels with little performance overhead.
There are only 6 hyper-calls in OSV. The Linux running on top of
OSV is intercepted only for the inter-processor interrupts. The re-
source isolation is implemented with hardware-assist virtualization.
The resource sharing is controlled by distributed protocols embed-
ded in current operating systems.

We implement a prototype of OSV on AMD Opteron processor
based 32-core servers with SVM and cache-coherent NUMA archi-
tectures. OSV can host up to 8 Linux kernels on the server with less
than 10 lines of code modifications to Linux kernel. OSV has about
8000 lines of code which can be easily tuned and debugged. The
experiment results show that OSV VMM has 23.7% performance
improvement compared with Xen VMM.

Categories and Subject Descriptors D.4.0 [Operating System]:
General; D.4.8 [Operating System]: Performance

General Terms Design, Measurement, Performance

Keywords Multi-core, Cloud Computing, Virtualization, Hard-
ware Assist Virtualization

1. Introduction
Multi-core processors are default for nowadays servers. Modern
servers are configured with more and more cores and RAM [5]. In
the future, the cores in a die will double steadily [17]. Based on this
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Figure 1. System call benchmark for native x86 64 Linux and
Linux on Xen. The benchmark creates a socket by calling the
socket system call, and then close the socket by calling system
call of close on a AMD 32-core server. The time measured is the
total time of calling the socket and close pair 1 million times. The
para-virtualized Linux on Xen has the most significant latency.
For x86 64 Linux, the system call is issued by syscall instruction,
which is intercepted by Xen for para-virtualized Linux to prepare a
faked system call frame for the guest Linux. The syscall instruction
is not intercepted by HVM Xen which is based on AMD SVM
technology, the performance overhead is mainly caused by the
memory access overhead.

observation, in this paper, we introduce a new lightweight VMM
architecture for future servers with redundant computing resources
(CPU cores and RAM). The new architecture reduces performance
overhead induced by traditional virtualization technology and also
makes the VMM more reliable.

With the support of the virtualization, a server with limited re-
sources can host multiple operating systems with good isolation.
These operating systems can share same CPU core and RAM. The
VMM dynamically schedules these operating systems based on
their states, idle or active. However, the virtualization technology in
traditional VMM also induces performance overhead to guest oper-
ating systems [8]. The virtualization of instructions, memory opera-
tions and emulation of devices are sources of the performance over-
head. For different virtualization technologies, performance over-
head is different. Figure 1 shows the total time of socket and close
system calls. In this micro benchmark, a socket is created by socket
system call and immediately closed by close system call. Total
time of calling this system call pair 1 million times is measured.
Para-virtualized Linux has the most significant latency. The inter-
ception operations for syscall instruction of Xen mainly contribute
to the performance overhead. HVM Xen in this paper is based on
AMD’SVM technology [6]. In HVM Xen, the syscall instruction

111

VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $15.00



 0

 20

 40

 60

 80

 100

Xen HVM Xen PVM Linux OSV

Ti
m

e 
(s

ec
)

Page Fault

Figure 2. Memory management micro benchmark for native
x86 64 Linux and Linux on Xen. Two threads allocate a 4KB page
using malloc, then the page causing a page fault. The time mea-
sured is the total time of 1 million times. The HVM-Linux on Xen
has the most significant latency. For x86 64 Linux, an extra nested
page fault contributes to the latency. For para-virtualized Linux, the
page is managed by the shadow page table, which is slower than na-
tive Linux. For OSV, the NUMA resource allocation makes it the
low latency.

is not intercepted by Xen. The virtualization also contributes to the
overhead of page fault handler of Linux. Figure 2 shows the total
time of two threads touching 1GB memory in a 4KB page size fash-
ion. The time for HVM Linux is larger than para-virtualized and
native Linux. The extra time of HVM Linux is induced by nested
page handler of Xen.

Virtualization layer is quite complex and makes whole VMM
prone to bugs and security problems. For example, Xen has about
200K lines of code in the hypervisor itself, and over 1M in the host
OS [19]. Some vulnerabilities and bugs in Xen have been reported
[1–4]. Malicious users can attack Xen through these vulnerabilities,
and take control over the whole system.

Nowadays, more and more companies are adopting VMM for
their computing resource management. In a company, the employ-
ees are provided with thin computer clients which are connected to
remote virtual machines allocated by VMM. The number of em-
ployees doesn’t change so much in a period. The performance of
virtual machines will affect efficience of employees. In this senario,
virtualization provides convenience but is not necessary.

Besides, modern operating systems are capable of distributed
services,for example, networked file system (NFS). Some devices
can be exported as a service and shared by other operating system
through standard distributed protocols. So, in a VMM, all devices
can be managed by a privileged guest. The guest then exports these
devices as a service to other guests through existing distributed
protocols. In this way, devices can be shared between guest OS
without virtualization. This can significantly simplify the VMM.

OSV is guided by the principle that guest operating systems
should run directly on the server without the interceptions of VMM.
This principle has two implications. First, the VMM should isolate
operating systems from each other. Second, guest operating system
manages its CPU core and RAM itself. The intended result is that
CPU cores and RAM are not shared by guest operating systems.
This limits the number of guest operating systems running on a
server. However, as the number of CPU cores and RAM in a server
increases, this is reasonable.

In this paper, we present an alternative approach - OSV, a light
weight VMM, for constructing the VMM for these computers with

number of cores. Rather than virtualizing resources in the com-
puter, OSV only virtualizes the multiprocessor and memory con-
figuration interfaces. Operating systems access the resources allo-
cated by OSV directly without the intervention of the VMM, and
OSV just controls which part of the resources are accessible to an
operating system. OSV VMM also allows the operating systems to
cooperate and share resources with each other, which makes the
many core servers become a distributed system and keeps com-
patible with current computing base.The resulting system contains
most of the features of traditional VMM, but with only a fraction
of their complexity and implementation cost. This is quite suitable
for the cloud computing.

In section 2, we provide our motivation for the OSV. Section 3
describes the design principles of OSV, while section 4 details the
implementation. Section 5 evaluates the OSV and shows the exper-
imental results. Section 6 summarizes related work. Limitations of
OSV are discussed in section 7 and conclusion is given in section 8.

2. Motivation
The main goal of OSV is to simplify the design and implementation
effort for constructing a VMM on multi-core servers. This section
details why the design for OSV is reasonable on multi-core servers.

Virtual Machine Monitor(VMM) is prevalent in Cloud-Computing.
By running numbers of operating systems concurrently, a single
computer can satisfy various needs of applications at the same
time, which makes the hardware running more efficient and reduces
the hardware cost. Despite the convenience mentioned above, the
VMM also incurs performance overhead. Performance overhead
is varied with the types of application [8, 27]. The performance
overhead is mainly caused by the virtualization of hardware re-
sources and dynamic resource schedule policy. Virtualization and
dynamic resource schedule are needed by a traditional VMM. This
is because there are limited hardware resources in a computer such
as CPUs, DRAM, I/O devices, etc, while operating systems use
these resources in an exclusive fashion. Traditional VMM uses a
privileged operating system to manage all the hardware resources.
Other operating systems access the hardware resources through the
privileged OS. In order to manage the hardware resources more
efficiently, the VMM is becoming more and more complex.

In order to run the operating systems concurrently, traditional
VMM must schedules the operating systems to make each operat-
ing system have the chance to get the CPU and do not conflict with
each other, when there are a limited number of CPUs in a computer.
The scheduler and virtualization are harmful to the system’s perfor-
mance and contribute large number of codes to VMM. For exam-
ple, for a null system call the para-virtualized Linux one Xen needs
1042 cycles for an entry to the kernel and 476 cycles for returning
to user space, while it is 148 and 134 cycles for the native Linux.
That’s why system call in PV guest is slow. On the other hand, as
the number of cores and the amount of DRAM in a computer in-
crease, the requirements for virtualizing the CPU and dram are not
necessary. The maximum resources used by an operating system
in a virtual machine is specified in a configuration file and is fixed
when been created. The virtualization layer dynamically allocates
the actual amount of physical resources to a virtual machine. For
future multi-core servers, the physical resources is sufficient to ful-
fill all the guest operating systems. So, each guest operating system
can be statically allocated with the amount of CPU cores and RAM
as the configuration file specified.

The main functions of the virtualization layer are arbitrating
access to memory, CPU, and devices, providing important net-
work functionality, and controlling the execution of virtual ma-
chines [19]. Based on the cloud computing model and the major
functions of VMM, using the static resource allocation policy is
reasonable [24].
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Figure 3. The architecture of OSV Kernel.

3. Design
The VMM poses several challenges for partitioning of a machine
to support the concurrent execution of multiple operating systems.
The most important one is that virtual machines must be isolated
from each other. In a traditional VMM, VMM virtualizes or para-
virtualizes the limited resources in a computer to isolate the virtual
machines from affecting each other, but at the cost of increased
complexity and reduced performance. This section details the de-
sign principle of OSV VMM. The intent is that the design principal
will improve the guest operating systems’ performance and sim-
plify the VMM. The overall architecture of OSV kernel is shown
in Figure 3.

3.1 CPU Cores
The architecture for future computers is far from clear, but the trend
of increasing amounts for both cores and DRAM is evident. Com-
modity VMM virtualizes the CPUs and DRAM to run as many
virtual machines as possible. This induces the performance over-
head. We provide the virtual machines with physical CPU cores
and DRAM without virtualization in OSV VMM. Each operating
system running in a virtual machine manages the physical cores and
DRAM itself without the intervention of the VMM. The operating
system can only access the physical resources allocated to the vir-
tual machine. The policy for CPU cores and DRAM allocated to a
virtual machine is based on their NUMA node affinity. All of these
approaches can promise the performance of the operating system.

The isolation for CPU cores between each virtual machine is
guided by modifying the computers’s processor information ta-
ble such as ACPI or Multi-processor configuration table for Intel’s
Specification. OSV VMM masks processor entries in the table for
the CPU cores not belonging to the virtual machine as unusable,
which makes the operating system ignore these cores during boot-
ing period. The CPU cores allocated to the virtual machine are all
in a NUMA node. By using the faked information, operating sys-
tems will only access the processors allocated to it. In the other
hand, the VMM must guard all the procedure of SMP-booting, be-
cause the processors may be reset by the booting signal. The current
implementation of OSV emulates the Intel’s multi-processor spec-
ification [18] for SMP booting. The inter-processor interrupt(IPI)
is widely used in the commodity operating system. When the IPI
is issued by using the logical ID for a processor, the CPU cores in
other virtual machines with the same logical ID will also get reac-
tion to the IPI which will cause the virtual machine to break down.
When the operating system initializes the CPU information and up-
dates the APIC value, the VMM catches these updates and stores

the corresponding physical ID for the logical ID of the CPU core.
When sending the IPI, the VMM gets the physical ID from previ-
ous stored information and replaces the logical ID for sending the
IPI. These operations need some minor changes to the source code
of the operating system, for Linux, this just five lines of c code
with inlined asm code. As the OS manages the processors itself,
there is no need for OSV to intercept some privileged instructions
such as syscall which improves the system call performance of the
OS.The implementation details will be discussed in section 4.1.

3.2 Main Memory
The amounts of physical maim memory allocated to a virtual ma-
chine are as many as it requires. In this way, VMM can promise
the performance of operating system. This approach requires more
memory which can be easily satisfied by current servers. Tradi-
tional VMM uses a shadow page table to maintain the memory
ranges accessed by an operating system. Furthermore, a VMM page
fault handler for processing a physical page frame request from op-
erating system should be provided. All of the above increase the
complexity of traditional VMM and decrease the performance of
operating system. Allocating as many amounts of physical meoroy
to an operating system as it declares can avoid page faults in the
VMM. This can improve the performance of the operating system
and reduces the code size of VMM. Also, the operating system can
access the main memory with real physical address which is helpful
for DMA operations. When a device submit a DMA operation, it
will use the exact page physical address to exchange the data. This
can reduce the overhead of VMM for guaranteeing the isolation of
the device operation in each operating system.

3.3 Devices
VMM nowadays is used to provide multiple special services in a
server by running multi customized operating system instances. In
this scenario, disks and network cards are the most used devices.
In OSV, all devices are allocated to a privileged operating system.
The I/O interrupts are all processed by it. The timer interrupt is for-
warded to other virtual machines by sending an IPI to a CPU core
of the virtual machine. Operating systems running on other virtual
machines can share these devices via services exported through
standard distributed protocol. There is a NFS server in the privi-
leged operating system. All other virtual machines access the file
systems via a NFS client which is widely used in nowadays com-
modity operating systems. All the file accesses are synchronized
by the NFS protocol. There is no need for the guarantees of the
VMM, which reduces the complexity of the VMM and improves
the performance.

3.4 Virtual Network Interface
In order to allow the virtual machines to communicate each other,
virtual network interfaces are provided by the VMM. The virtual
machines can communicate with each other using standard dis-
tributed protocols over the virtual network interface. For example,
the virtual machines share file through NFS. By the virtual net-
work interface, traditional distributed protocol based applications
can run on OSV VMM without code modification. This can keep
compatible with current computing base.

There is a virtual network interface card(VNIC) for each virtual
domain. Each VNIC has a private memory queue for receiving
data packets. When the network code of the operating system
submits a packet to the VNIC, the packet will be forwarded to
the corresponding memory queue of the VNIC whose hardware
address matches the packet’s destination. When receiving a packet,
the VNIC passes the packet to the network stack code. These
memory operations for processing the packet are all done by the
operating system without the interception of the VMM, which can
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increase the performance of the network stack. VNIC is provided as
a driver module which can be installed in Linux without modifying
Linux’s source code.

3.5 Inter-OS Communication Socket
The performance of inter-OS communication via virtual network
interface is limited by Linux’s TCP/IP network stack. In order to
increase the performance, a UNIX IPC like socket has been pro-
vided by the OSV. The API is the same as UNIX IPC socket. When
creating a socket, one just needs to specify the socket type to OSV
type. Then traditional socket functions such as listen, accept, send
and so on are used to send and receive data. The data transmission
mechanism is similar to virtual network interface: there is a mem-
ory queue for each virtual machine, each data packet is placed into
proper queue by the destination virtual machine ID and the port.
The memory operations are like the virtual network interface all
done by operating systems which need not trap into the VMM.

As VNIC mentioned in 3.4, OSV socket is also a driver module
installed in guest OS. Extra head files for C programmes are also
provided. Applications with source code can be easily ported to this
socket. By changing the socket type to OSV and using OSV defined
address spaces, applications can communicate across guests via
OSV socket. This is helpful for applications which are sensitive
to the communication bandwidth.

3.6 Hypervisor Call
The design principle for the OSV kernel is that VMM restricts
resource ranges accessed by operating system and lets the operating
system to make the decision of resource usage. This principle
reduces the interface complexity between operating system and
VMM. In OSV VMM, it has only two types of hyper-call: resource
access restrict functions and communication channel construction
functions.

The resource restrict functions are used to isolate the resources
allocated to each virtual machine and synchronize the accesses to
shared resources. The resources are such as I/O devices, Local
APIC, I/O APIC and so on. The later type of functions are used by
the communication between operating systems. When two operat-
ing systems need to communicate with other, one operating system
calls the function with the arguments of physical address of allo-
cated memory and the two virtual machines ID pair, then the other
operating system traps into the virtual machine to get the memory
address with the ID pair. The shared memory and ID pair compose
the communication channel. The memory queues for virtual net-
work interface and inter-OS communication socket are constructed
using these functions. The trap into VMM is only needed when
the construction of the communication which can improve the per-
formance of the communication and also reduce the complexity of
OSV VMM.

3.7 Virtual Machine Construction
A virtual machine instance contains physical processor cores
and main memory. Each virtual machine has statically allocated
amounts of processor cores and main memory which can not be
changed when constructed. The resources are allocated based on
their NUMA node affinity. The main memory allocated are in the
same NUMA domain with the processor cores which can reduce
the memory access time. The I/O devices are only allocated to the
privileged domain. Other domains can access the services provided
by these devices through standard distributed services exported by
the privileged domain. The OS image and its drivers are loaded into
main memory when the system is booting.

The resources needed by a domain are preallocated before they
are booted. A domain is created when the system load is high. The
virtual machine instance is created by issuing a hypervisor call in

privileged domain. When the virtual machine is booted, the tasks
can be submitted to it using standard distributed protocols.

3.8 Isolation Between Guests
CPU cores and memory are preallocated to a guest OS. Guest OS
initialises its internal structures based on these resources. So re-
sources out of this range will not be accessed by the guest OS. OSV
should control devices and interrupts to avoid guest OS interfering
with each other.

For devices as described in previous section 3.3, all devices
are allocated to a privileged operating system. So, interrupts from
devices are not intercepted by OSV. The only thing OSV to do is to
control port operations to avoid error states, such as reboot or reset
operations. If a guest OS attempts to write a port, it will trap into
OSV. OSV analyzes this operation to detect abnormal states, such
as reboot operation, etc. If a reboot operation is found, OSV only
reboots the corresponding guest OS not the computer. Operations
which cause the server crash are denied by OSV.

IPI is a special interrupt used by operating system. OSV inter-
cepts IPI to avoid a guest OS sending IPI to other guests. A miss-
sending IPI will corrupt other guests. Based on these mechanisms,
although there is no virtualization layer in OSV, guest OS can be
well isolated from each other in OSV.

3.9 Application Programme Framework
A many core server running with OSV VMM is more like a dis-
tributed system. A map-reduce programming framework is pro-
vided in OSV. Applications written with the programming frame-
work provided by the OSV are distributed among the OSes. The
applications are submitted in the manager OS, and the results are
also resembled in it. The framework is implemented on top of the
OSV socket which can provides good performance.

4. Implementation
OSV VMM is implemented as a multithreaded program running on
multi-core processor based servers. OSV differs from existing sys-
tems in that it pays more attention to the resources isolation rather
than virtualize these resources. For example, OSV does not con-
tain any structure to virtual the processor cores and main memory.
The code size for OSV is about 8,000 lines of code which make
it easier for tuning. The current implementation is based on AMD
Opteron processors with SVM technology support and can run mul-
tiple Linux operating systems concurrently. The table 1 lists the
approaches used by OSV to host multiple operating systems.

4.1 Multi-Processor Support
In order to support commodity SMP operating systems, traditional
VMM needs a virtual CPU struct to provide IPI and schedules the
mapping for the virtual CPUs and physical cores. In OSV, operating
systems use physical CPUs directly. There are two challenges:

Multi-Processor Boot x86 based multi-processor systems are
booted using universal SMP boot protocol. This protocol is
to send two init inter-processor interrupts to the processor core.
The init IPI will cause the processor to reset and jump to a
specified location to execute. The reset action will make the
processor’s all the states be cleared including the registers ini-
tialized by the OSV. This will make OSV lose the control of
CPU cores.

Inter-Processor Interrupt Traditional operating systems need the
IPI to synchronize the system state and specify jobs for a CPU.
Some IPIs are sent in logical destination mode which causes
the CPU cores with the same logical id in other operating
system making reaction to the IPI. This will lead the system
to a unstable state.
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Main Memory
NUMA nodes Each operating system can access the DRAM belongs to a NUMA node. The DRAM in other

nodes are invisible to the OS. This is initialized in the E820 ram map.
Paging For the privileged operating system, it works the same as in a bare metal. Other operating

systems are controlled by a ncr3 register in AMD processors. Page size used in nested page
table is splited, for low address 4KB size is used while 1GB for high address

Processor cores
Multi processor The processor cores allocates to an OS is in a NUMA node fashion. The cores in a NUMA node

are allocated to an OS, which can reduce the remote cache access. The multi processor boot
interrupt is redirected to a SX exception.

Interrupt All the I/O interrupts are delivered to the privileged OS. Other OSes access the I/O through
distributed protocols.

Timer The external timer interrupt is dispatched by the privileged OS through the IPI.
Disks and I/O Devices
Network Interface card All the network cards are controlled by the privileged OS. An virtual network card is provided

to other OS.
Disks, etc These devices are exported as services by the privileged OS to other OS, which can be accessed

through standard distributed protocols.

Table 1. The approaches for OSV to control resources for operating system

For the first one, we redirect the init interrupt to a Security
Exception which will be caught by OSV VMM. In this way, the
processor core can avoid being reset. When OSV catches the init
IPI, OSV initialises the guest CPU mode to 16bit mode and gets
the start code ip address for CPUs to execute after the init interrupt
and redirects the CPU to this instruction when it returns from the
VMM. The CPU will do as the traditional multiboot protocol does
except for the reset action. The start code ip address is stored by
Linux kernel which is 0x467. This address is specified by multi-
boot specification. Current implementation of OSV is some tricky
and hardly dependable for the AMD processors. Because init IPI
redirection is based on the AMD’s SVM technology. Modifying the
source code of the OS is another way to support the multi-processor
booting. The SMP-booting code is not so complex and irrelative
for the performance of OS. For example, the SMP-booting code for
Linux is all located in a C file. The modifications to the source code
is less than 10 lines of c code, including init IPI sending functions
and some port operations. This can make the VMM more portable.

For Inter-Processor Interrupts, some minor code modification
should be made to operating systems as mentioned in section 3.1.
OSV catches writes to some APIC registers. Normal APIC register
operations are not intercepted by the OSV kernel except for IPI
related registers. These registers are 0xD0 (Logical Destination
Register) and 0x300 (Interrupt Command Register Low). OSV
distinguishes logical and physical IPI destination mode through the
APIC register 0x300. For physical mode, OSV lets it as the normal
operating system does, while for logical mode, the kernel replaces
the logical destination id with corresponding physical id and send
the IPI with physical mode. The physical id for each CPU is unique
which avoids CPUs in a domain making reaction to other domains
IPI. This is lightweight compared with traditional VMM. The extra
overhead for the APIC register interception is about 120-170 cycles
for our servers. Compared to the latency of IPI interrupts, this is not
critical to operating systems’ performance.

4.2 OSV Socket
In cloud computing, operating systems running on a VMM com-
municate with each other frequently. They can communicate with
each other through traditional network. In OSV, a socket is pro-
vided for improve the communication performance between oper-
ating systems running on OSV. The socket is UNIX IPC like. The
data transfer between operating systems can be done without the
intervention of the OSV kernel. This is about the implementation

Figure 4. Structure for OSV socket.

of the osv-protocol. This protocol is based on shared memory and
implements the Berkeley Sockets interface. Programmer could use
this protocol as normal inet. Each domain in our OSV kernel is ad-
dressed by IP , and each program in a domain is distinguished by a
access point, a port number. Figure 4 shows the overall structure of
OSV socket.

There is only one receive buffer in each domain and one work
queue is responsible for scanning the buffer periodically. In order to
make domains be able to put message into each other’s buffer, the
kernel allocates the receive buffer in initialization and returns each
buffer’s physical address. For a socket, it has a buffer list to store
the messages received but not handled. One socket is corresponding
to one access point, distinguished by a unique integer.

There are two types of communication in osv protocol:
Inter-process communicate in a domain: The transfer procedure

packages message into a osv message data structure which includes
sender and receiver address, sender and receiver port number, mes-
sage length, message data, message type. And then constructs a
OSV skb, inserts it into the receiver’s skb list. When receiver re-
vokes a receive procedure, it will get this message form it’s skb
list.

Inter-process data transfer across domains: During the proto-
col initialization, each domain get the information about other do-
main’s physical receive buffer address. So, they can put data in each
other’s receive buffer easily. Like IPC in a domain, the transfer
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packages the message firstly. After that, it puts the data into the
corresponding domain’s receive buffer according to the receive IP
address. As each domain has a work queue scanning it’s own re-
ceive buffer, the message can be discovered after being put into
buffer immediately. And then, the message data is picked up from
osv message data structure, packaged into a osv skb, inserted into
the receiver’s skb list. The remainder things will be done like IPC
in a domain.

4.3 Linux Kernel
In order to host multiple Linux kernels concurrently, some modi-
fications must be made to linux source code. Modifications to do-
main 0 and other domains are different:

Domain 0 The domain 0 needs to dispatch the external timer to
other domains. So, in the domain 0 timer interrupt function should
send IPI to other domains. This is done by issuing a hyper-call to
irq0 forward(). The codes added to the linux kernel is just 5 line of
inlined asm code.

Domain x The external timer interrupt for normal domains is
received through IPI, so the timer interrupt should issue an EOI
to the APIC of the CPU. So, the function of ack APIC irq() should
be called in the timer interrupt function. Linux kernel assign each
online CPU a logical id. When running multiple Linux, the logical
id may be confused while sending IPIs. So assign of logical id to
APIC should be intercepted by OSV kernel. And also, the action
for sending IPI needs to be intercepted. The work is done by
intercepting the writes to APIC registers. When the linux kernel
writes the APIC register, it traps to the OSV kernel, the OSV
translates the logical id to physical id and then send the IPI using
the physical id.

All the modifications of Linux kernel is summarized in table 2.
Total lines of code are less than 10, which is easily ported for linux.

5. Evaluation
This section demonstrates that the OSV’s approach is beneficial
to operating systems’ performance. Performance of OSV is eval-
uated in this section.We first measure the overhead of virtualiza-
tion using a set of operating system benchmarks. The performance
is compared with Xen and native Linux kernel. Then the perfor-
mance for the OSV’s network system is measured. Finally, mem-
cached is used to show the overall performance of OSV. The ex-
periments were performed on two servers: Dell T605 two quad-
core processors 2.0GHZ 2350 Opteron server with 16GB RAM, a
Broadcom NetXtreme 5722 NIC and a 146GB 3.5-inch 15K RPM
SAS Hard Drive, and Sun x4600M2 eight quad-core processors
2.8GHZ 8478 Opteron server with 256GB RAM and 1TB RAID0
Hard Drive. Linux version 2.6.31 was used, and compiled for archi-
tecture x86 64. The NFS version 4.1 was used. The opteron proces-
sors in both machines are with SVM and NPT support which are
used by OSV. Both Xen and OSV guests are based on Linux kernel
2.6.31. The PV guest of Xen is configured without superpage.

5.1 Operating System Benchmarks
In order to measure the performance overhead of OSV VMM,
we performed some experiments targeting particular subsystems.
The lmbench [21] benchmark is used to measure the overhead. We
compared the performance of Linux on bare metal, XEN HVM and
PVM. The configuration for XEN guest OS is binded to a NUMA
node: Guest OS can only access the drams and cpu cores on the
specified node. This can reduce the schedule overhead of XEN
and avoid cross NUMA node memory accesses. This expriment
is carried on the 32-core server. For native Linux, lmbench is not
configured to bind to a NUMA node. This is because for a 32-core
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Figure 5. Local Communication Latency.
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Figure 6. Local Communication Bandwidth.

server lmbench needs more memory than a NUMA node. Besides,
lmbench also measures remote resource access latencies (including
CPU cores and memory) which makes it should not be bound to a
NUMA node. For OSV and Xen, guest OS kernels are configured
with 4 cpu cores and 16GB drams.

The figure 5 shows the local communication latency. XEN
HVM based guest OS gets the similar performance to OSV ker-
nels and better than Linux and other PVM guests. This is mainly
caused by the NUMA architecture of multi-core server: local ac-
cess time is smaller than remote access. The resources used by the
OSV kernel and XEN HVM is bound to a NUMA node so the cpu
cores only have local dram accesses which make the performance
better than Linux. The performance of XEN PVM guests is limited
by the intervention of XEN when accessing the system resources.

Local communication bandwidth is shown in figure 6. The OSV
kernel gets a high bandwidth compared to Linux and XEN HVM
guest, especially in mem read test. The guest OS in OSV VMM ac-
cesses the resources allocated to it without the intervention of OSV
VMM which makes it lower performance overhead. For the remote
dram and cache coherent latencies, the Linux’s bandwidth is the
lowest with large number of cpu cores, 32-core in this experiment.
In the File reread test, the OSV domain1 has the highest bandwidth.
This is caused by the NFS based file system. When a file has al-
ready been accessed, it will remain in the NFS client cache, which
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Domain 0 irq0 forward hyper-call is added to the timer interrupt function. 5 lines of inlined asm code.
Normal Domains ack APIC irq() function call is added in the timer interrupt function; apic->write is replaced with

osv apic write. 4 lines of c code.

Table 2. The modifications made to Linux kernel.
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Figure 7. Processor and System call latency.
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Figure 8. Context Switch Latency.

can accelerate the file read. The device of HVM guest on XEN is
emulated, so the file reread bandwidth is lower then PVM guest.

In the context switch latency test shown in figure 8, the latency
for OSV kernel is small which is similar to the HVM guest on XEN.
The NUMA architecture and the TLB shootdowns contributes to
the high latencies for Linux. The TLB shootdowns are expensive,
when the number of cores is large. This contributes to the high
latency. For PVM guest on XEN, each context switch needs the
modification of shadow page table, so its latency is as high as
the Linux. All the systems latency increases with the number of
processes. The Xen domain 0 of both HVM and PVM have a high
latency. This is because the domain 0 of XEN need to frequently be
in service of the guest.

System call latency is critical to application’s performance. The
benchmark results are listed in figure 7. The Linux has the lowest
latency for system calls, while OSV kernel and HVM guest on XEN
get a similar result. The domain 0 for OSV kernel has the similar
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Figure 9. File and VM system latency.

performance compared to Linux. The domain 1 of OSV kernel in
the open/close test get a super high latency. This is mainly caused
by the NFS based File system. When opening and closing a file,
the domain 1 needs two more network connection to finish the job
which brings in the high latency. PVM guests on XEN have high
latency in all the tests. These are all caused by the intervention of
XEN when PVM performs some privileged operations.

The results for File and VM system tests which are shown in
figure 9 are similar to the System call test. The domain 1 on OSV
kernel has the biggest latency in tests except in prot fault and fd
select. This also caused by the NFS filesystem. The network latency
between domain 0 and domain 1 contributes the high latency. The
domain 0 has a comparable performance to the Linux and XEN
HVM guest. For mmap test, the domain 1 of XEN and OSV kernel
all get a high latency, which is caused by the NFS file descriptor
operations.

5.2 Socket Performance
In order to improve the communication performance of operating
systems running on OSV, OSV socket is provided. We examine
the bandwidth of the socket based on the TCP/IP over virtual
network interface card and OSV socket protocol. The comparison
is taken between Linux loopback and UNIX IPC which are widely
used in the Linux system for SMP servers. We examine the time
for transmitting 1GB data in different block size. The sender and
receiver work in two different domains for OSV socket and VNIC.
The VNIC is configured with 1500 MTU. For loopback test, the
ip 127.0.0.1 is used. The UNIX IPC is measured between two
processes. All the tests results are a median of 5 experiments.

The results are shown in table 3. When the block size is small
the performance of OSV socket is comparable to UNIX IPC es-
pecially for the 256KB block size. This the same situation for
the VNIC. For loopback card, when receiving a packet, it just
passes the received sk buffer to up layer by calling the function
netif rx. While works with VNIC, when receiving a packet from
the packet buffer, the driver should make a call to dev alloc skb
to get a sk buffer for storing the received data, then passes it to
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OSV Socket UNIX IPC VNIC lo
1K 1.82 1.59 4.73 2.32
8K 1.04 0.92 3.22 1.65
32K 0.93 0.77 2.75 1.3
128K 0.91 0.74 2.47 1.22
256K 0.87 0.74 2.51 1.16
1M 1.04 0.72 3.01 1.11

Table 3. Socket performance test, time in seconds. The test mea-
sures the time for transmitting 1GB data in different data block
size.
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Figure 10. SPECint2006.

the up layer by calling the function netif rx. This somewhat makes
the performance for the VNIC worse than loopback. This is similar
to the OSV socket and UNIX IPC. When the block size becomes
large, the performance for VNIC and OSV socket decreases a little
while the UNIX IPC and loopback card get good performance. This
caused by the page frame management mechanism in Linux kernel.
When the data block becomes large, it is difficult for the kernel to
get continuous page frames to store these data from user space, this
contributes mainly to the poor performance for the OSV socket and
VNIC.

5.3 Application Performance
SPEC SPEC benchmarks are used to test the performance of the
system under different workloads. We ran the benchmarks in both
OSV and Xen with HVM Linux. Each VM was configured with
four cores, 32GB of memory. The cores and memory allocated the
a VM are in a NUMA node. There was only one VM running on
the system. The device emulation was not used.

The results of our experiments are show in figure 10. We saw
an approximately 2%-17% performance improvement across the
board. The astar and mcf has the most significant performance im-
provement, which are 14% and 17%. Mcf and astar are memory
heavy work, for example, mcf needs 1700 megabytes when run-
ning. The memory micro-benchmark results in figure 2 shows that
OSV is efficient than Xen HVM. The performance improvement
comes from the removal of the virtualization layer and the dedi-
cated resource allocation policy.

Memcached Memcached is an in-memory key-value store for
small chunks of arbitrary data (strings, objects) from results of
database calls, API calls, or page rendering. Wikipedia, Youtube
and Twitter all use memcached. We evaluated memcached in both
OSV and Xen. The virtual machine configurations are the same
as the SPEC experiments. Both Xen HVM and OSV are using
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Figure 11. Memcached Throughput.

virtual network card. Physical network card in the privileged virtual
machine is configured with port forwarding. Then, other computers
can access memcached service provided by the virtual machine.

The connection throughput is measured. Results in figure 11
show that there is 23.7% performance improvement. For Xen
HVM, the performance is limited by the frequently Nested Page
Fault (NPT). HVM Linux needs frequently to trap into Xen. The
context switch induces the performance overhead.

6. Related Work
Our work is inspired by many prior works. This section details the
related work and summarizes them for differences between OSV
VMM.

6.1 Virtual Machine Monitor
The VMM is used for hosting multiple operating system in a
server for different application usage. OSV makes the many core
system distributed which is similar to a VMM such as Xen [8],
VMware [27]. But the OSV does not virtualize the resources and
provides scalable performance while with little code base. No-
hype [19] VMM is also focused on the removal of the virtualization
layer from VMM. NoHype is focused on building a secure cloud
VMM, while OSV is to improve the performance of VMM. In No-
Hype, the hardware paging mechanisms are used to isolate each
guest OS. For OSV, the hardware paging mechanisms only used in
the boot time of guest OS, which is used to emulate some CMOS
operations. After booted in OSV, the hardware paging mechanisms
is turned off. So, OSV has lower performance overhead compared
with Xen, while NoHype has a similar performance compared with
Xen. OSV uses existing distributed services to share resources
among guest OS. These services are based on a VNIC provided
by OSV. NoHype is based on Xen and emulated devices are still
needed.

6.2 Multicore OS
In order to make the operating system scalable on many core
servers, researchers have done lots of work. K42 [7], Tornado [14]
is developed in a object-oriented fashion. The kernel structures are
controlled in distributed fashion, which makes the kernel scalable
on many core platform. The multi-kernel [9] is similar to our work,
it treats each core individually using message passing instead of
shared memory to communication. Helios [22] is developed for
heterogeneous architectures, it provides a seamless, single operat-
ing system abstraction across heterogeneous devices. These ker-
nels scale well for multi-core servers, but the ABI(Application Bi-
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nary Interface) is not compatible with current computing system.
Disco [12, 16, 26] is a VMM developed to running multiple oper-
ating system concurrently to improve the scalability on multicore
servers, which induces the virtualization overhead.

6.3 New Kernel
Exokernel [13] and Corey [10] are operating systems developed to
provide the application more flexible resource management, which
can reduce the overhead for resource contention and management
overhead. Saha et al. have proposed the Multi-Core Run Time
(McRT) for emerging desktop workloads [23] and explored con-
figurations in which McRT runs on the bare metal, with an oper-
ating system running on separate cores. Salias et al have tuned the
linux kernel for many core servers which can achieve the scala-
bility for network applications [11], this needs the system special-
ized for an application. Libnuma [20] is proved by the linux kernel
to improve the performance on NUMA based many core systems.
Several studies with Linux on multicore processors [15, 25] have
identified challenges in scaling existing operating systems to many
core. All these work have inspired the work of OSV VMM.

7. Discussion
The motivation of implementing OSV is to build a neat and low per-
formance overhead VMM. OSV tries to remove virtualization layer
and uses a static resource allocation policy. Processor cores and
memory ranges are pre-configured by OSV. So, OSV lacks the flex-
ibility compared with traditional VMM. It is suitable for a cloud-
computing model where users specify their resources demand in
advance. Current implementation of OSV is based on AMD pro-
cessors. It is easy to port OSV to other platforms with similar hard-
ware assit virtualization technology. The only thing needs to pay
attention to is the multi-processor boot trick used in OSV. How-
ever, this can be done by modifying the Linux source code which
is described in section 4.1.

OSV demonstrates a way for constructing a lightweight VMM.
The results above should be viewed as a case for the principle
that VMM only controls the resources rather than a conclusive
p̈roof’́. OSV lacks many features of commodity VMM, such as
Xen, which influences experimental results both positively and neg-
atively. Many of the ideas in OSV could be applied to existing
VMM such as Xen. For example, booting guest OS with a pre-
defined information table can be applied to Xen. Finally, it may be
possible for Xen to provide a guest like the guest in OSV.

8. Conclusion
OSV is a lightweight VMM for many core servers. It provides the
system scalability on many core servers, while keeps compatible
with current computing base. It removes the virtualization layer in
traditional VMM. Current distributed protocols are employed for
resource sharing. TCP/IP and OSV socket are provided, by which
the operating system can communicate with each other by standard
distributed protocols, while by the OSV socket with high perfor-
mance. The performance overhead for operating systems running
in OSV is low compared with Xen VMM. The line of code for
OSV kernel is about 8000, which make the system can be tuned for
safety and reliability.
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