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Abstract—The OS kernel is critical to the security of a computer system. Many systems have been proposed to improve its security. A
fundamental weakness of those systems is that page tables, the data structures that control the memory protection, are not isolated
from the vulnerable kernel, and thus subject to tampering. To address that, researchers have relied on virtualization for reliable kernel
memory protection. Unfortunately, such memory protection requires to monitor every update to the guest’s page tables. This
fundamentally conflicts with the recent advances in the hardware virtualization support. In this paper, we present the design and
implementation of SecPod, a practical and extensible framework for virtualization-based security systems that can provide both strong
isolation and the compatibility with modern hardware. SecPod has two key techniques: paging delegation delegates and audits the
kernel’s paging operations to a secure space; execution trapping intercepts the (compromised) kernel’s attempts to subvert SecPod by
misusing privileged instructions. We have implemented a prototype of SecPod based on KVM. Our experiments show that SecPod is
both effective and efficient.
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1 INTRODUCTION

With its privilege, an operating system (OS) kernel is
critical to the security of the whole system. Unfortunately,
modern kernels are too complicated to be secure – they
often consist of tens of million lines of source code. Con-
sequently, an increasingly large number of vulnerabilities
are discovered in all major kernels each year [1]. These
vulnerabilities are routinely being exploited to take over the
system. To address that, researchers and practitioners have
proposed many solutions. For example, modern kernels all
have built-in exploit mitigation mechanisms such as address
space layout randomization(ASLR) [2] and data execution
prevention (DEP, or W ⊕X) [3]. They significantly raise the
bar of functioning kernel exploits. However, these systems
are built on top of a weak foundation that page tables, the
data structures that control the memory protection, are always
writable in the kernel (to facilitate frequent page table up-
dates). Therefore, a powerful attacker could exploit a kernel
vulnerability to manipulate critical kernel data structures,
such as page tables, and circumvent the in-kernel memory
protection. To that end, a stream of research has proposed to
deploy memory and other protections “out-of-the-box” in a
virtualized environment [4], [5], [6], [7], [8], [9], [10], [11]. For
example, Patagonix extends the hypervisor to identify and
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protect the code running in the VM [6]. NICKLE achieves a
similar goal through memory shadowing [7].

Virtualization-based security systems are often at odds
with recent advances in the hardware virtualization sup-
port: many security tools need to intercept and respond to
key events in the VM. Each intercepted event causes one or
more expensive world switches between the virtual machine
and the hypervisor. On the other hand, the hardware virtu-
alization support, such as AMD-V and Intel VT, strives to re-
duce world switches. In particular, the nested paging allows
guests to freely update their page tables without involving
the hypervisor. However, the guest page table update is a
key event that many security tools are interested in [5], [6],
[7], [11]. This forces the hypervisor to run in the less-efficient
shadow paging mode where updates to guest page tables
are trapped and verified by the hypervisor. To reconcile this
conflict, it calls a new approach that can accommodate the
needs of virtualization-based security tools, but also take
full advantage of the hardware virtualization support.

In this paper, we propose SecPod, an extensible frame-
work for virtualization-based security systems. SecPod en-
capsulates a security tool in a trusted execution environ-
ment that coexists with and yet is strictly isolated from
the vulnerable kernel. Specifically, it creates a dedicated
address space (the secure space) in parallel to the existing
kernel address space (the normal space). The secure space
is rigorously protected from the normal space by the two
key techniques of SecPod, paging delegation and execution
trapping: in the former, the kernel delegates all its paging
operations, including page tables and their updates, to the
secure space. The kernel is deprived of the privilege to
directly modify the effective page tables. The secure space
enforces a non-bypassable memory isolation by sanitizing
the guest page table updates. The latter foils the attacker’s
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Fig. 2: Nested paging (GPT and NPT both in effect).

attempts to subvert the secure space by misusing privileged
instructions. The hypervisor notifies the secure space any
such attempts via signals. The secure space can accordingly
respond to the event by, say, issuing an alert or terminating
the VM. The synergy of these two techniques isolates a
security tool from the (compromised) kernel.

We have implemented a prototype of SecPod based on
the popular KVM hypervisor [12]. Our prototyping efforts
show that SecPod can be integrated into an existing hy-
pervisor with a minimal increase to its code base. Our
experiments demonstrate the efficiency and effectiveness
of SecPod. For example, SecPod introduces about 2% of
overhead on average for the I/O-intensive SysBench FileIO
benchmark, and about 5% overhead on average for the
SysBench online database transaction benchmark.

The rest of this paper is organized as the following: in
Section 2, we define the scope of the problem and the threat
model. We then describe the design, implementation, and
evaluation of SecPod in Section 3, 4, and 5, respectively. Fi-
nally, we present the related work in Section 6 and conclude
the paper in Section 7.

2 PROBLEM OVERVIEW

In this section, we give a brief overview of the hardware vir-
tualization support, particularly the memory virtualization
support, and explain how they impact the design of security
tools. Early hypervisors for x86 virtualize the guest memory
with shadow paging, in which a guest page table (GPT) is
superseded by its shadow page table (SPT) [13] (Figure 1).
Specifically, the hypervisor manages a SPT for each guest
page table. Any changes to the GPT must be synchronized
to its SPT to take effect. This provides an opportunity for
security tools to examine and control every change to guest
page tables [5], [6], [7], [8], [11], [14]. In shadow paging,
GPTs translate guest virtual addresses to guest physical
addresses, i.e., the virtual and physical addresses from the
guest’s perspective. Guest physical addresses must be fur-
ther translated to the actual physical addresses used by the
memory controller. Since SPTs are the only effective page
tables, they map directly from guest virtual addresses to
physical addresses (Figure 1).

Recent x86 processors have the hardware virtualization
support. Early extensions focus on trapping sensitive guest
instructions, such as SGDT, SIDT and MOV to CR3, to allow
the hypervisor to virtualize the related resources. Later
revisions aim at improving the performance with the direct
support for critical virtualization tasks. Particularly, nested
paging is a hardware support for memory virtualization
in which the processor translates guest memory accesses
with two levels of page tables (Figure 2): the GPT maps
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Fig. 3: LMBench performance comparison on KVM guest
(with NPT), Xen-HVM (with NPT), Xen-PVM (with SPT).
The performance of Xen-HVM and Xen-PVM are normal-
ized to the KVM guest.

guest virtual addresses to guest physical addresses, and the
nested page table further maps guest physical addresses to
physical addresses (NPT is also called extended page table.
For clarity, we use NPT). Figure 3 shows the system call
performance comparison of NPT and SPT backed VMs us-
ing the LMBench micro-benchmark. We used a KVM guest
and a Xen HVM (Hardware-assisted VM) guest to measure
the performance of NPT-backed VMs. Since KVM does not
support memory para-virtualization, we chose a Xen PVM
(Paravirtualized VM) guest to evaluate the performance of
SPT-backed VMs. All of the VMs run on the same physical
machine and have the same virtual hardware configuration
(1 vcpu, 2GB memory). The results of Xen HVM and Xen
PVM are normalized to the KVM guest in Figure 3. We can
see that SPT-backed VMs have much higher performance
overhead than NPT-backed VMs (the former has about 2-
6x worse performance for most of the test cases, such as
null syscall, fork, context switch). This illustrates that recent
virtualization hardware brings significant performance ben-
efit over the traditional para-virtualization (shadow paging)
based approach. Similar results are reported by others [15].

With the hardware virtualization support, the guest has
full control over its GPTs, while the hypervisor manages
NPTs and is not aware of changes to GPTs. Consequently,
memory protection enforced in NPTs can be circumvented
by remapping the (protected) guest virtual memory in GPTs.
For example, data execution prevention (DEP) enforced in
the NPT can be foiled by remapping the guest kernel code
to the writable-and-executable physical memory. Because
of this, many virtualization-based security systems cannot
take full advantage of nested paging, which has tremendous
advantages in performance over shadow paging [15].

Threat Model and Assumptions: in this paper, we
assume a trusted booting protocol, such as tboot [16], is



3

used to securely load the hypervisor, which in turn loads
the guest OS and initializes SecPod. The guest kernel is
benign but contains exploitable vulnerabilities. After boot,
we assume the presence of a powerful attacker that can
change arbitrary memory of the kernel by exploiting some
vulnerabilities. Moreover, we consider the hypervisor to
be trusted. This can be guaranteed by recent advances in
the hypervisor integrity through formal verification and
integrity protection and monitoring [17], [18], [19], [20].

3 SYSTEM DESIGN
3.1 System overview
SecPod aims at providing a trusted execution environment
for virtualization-based security tools. Figure 4 gives an
overview of SecPod with the two key techniques: paging
delegation and execution trapping. In this architecture, security
tools run in a dedicated secure space defined by the SecPod
page table, while the kernel runs in the normal space de-
fined by the kernel page table. An entry gate and an exit
gate are responsible for switching these two spaces. This
is essentially a page table based isolation [9], [20], [21]. To
switch the space, the entry or exit gate only needs to load
the respective next page table into CR3, the page table base
register of x86. The entry gate is the only way to enter
the secure space from the normal space as guaranteed by
execution trapping. SecPod provides one-way visibility into
the kernel – a security tool in SecPod can introspect and even
modify the kernel memory, but not the other way around.

However, simple page table based isolation is not secure
for three reasons: first, the kernel still has full control over
its page table. This allows the (compromised) kernel to
subvert SecPod by mapping and modifying the secure space
memory. It is thus critical to validate the kernel’s page table
updates to enforce strict memory isolation. SecPod solves
this challenge with the first technique, paging delegation, in
which the kernel delegates all its paging operations to the
secure space, including page tables, page table updates, and
task switches (one step of a task switch is to load the page
table of the next process to CR3). Accordingly, the kernel,
including kernel exploits, cannot modify its page tables.
All the updates must be delegated to and sanitized by
the secure space. Second, the kernel is still privileged and
free to execute privileged instructions. These instructions
can be misused to compromise SecPod. For example, the
kernel could use the MOV to CR3 instruction to load a
crafted page table to bypass the secure space. SecPod relies
on the second technique, execution trapping, to eliminate
this threat. Specifically, the hypervisor intercepts sensitive
privileged instructions executed by the kernel, and forwards
the captured events to the secure space as signals. The secure
space can decide how to respond, for example, by issuing
alerts, ignoring them, or terminating the violating kernel. It
can also dispatch the events to the security tools. This whole
process is similar to the signal handling in traditional OSes.
Third, the attacker could attempt to subvert SecPod through
DMA attacks [22]. DMA operations by hardware devices
use physical addresses, and thus are not translated by page
tables (page tables are used by the CPU to translate software
memory accesses.) The hypervisor should have already
employed IOMMU to thwart DMA attacks. The secure space
should be excluded from the memory accessible to devices
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Fig. 4: The overview of SecPod.

in IOMMU as well. In the rest of this section, we describe
these two key techniques in detail.

3.2 Paging Delegation

SecPod delegates the kernel’s paging operations to the se-
cure space in order to enforce memory isolation. Specifically,
the secure space maintains the shadow page tables (SPTs)
for the kernel. SPTs stay synchronized with the kernel’s
page tables. Any updates to the kernel page tables must
be merged to SPTs to take effect because SPTs are the
only page tables used by the CPU. The kernel may keep
its own page tables to facilitate implementation, but they
are never loaded to the CPU for address translation. This
is technically similar to shadow paging in the traditional
virtualization systems. Figure 5 compares these two shadow
paging designs. In virtualization, SPTs are managed by the
hypervisor, which is responsible for synchronizing any GPT
updates to SPTs. SPTs are the only page tables in use for the
guest. Accordingly, SPTs translate guest virtual addresses
directly to physical addresses (Figure 1); In SecPod, SPTs
are instead managed by the in-VM secure space. It is further
backed by the nested page tables (NPTs). Both SPTs and
NPTs are used by the CPU to translate guest addresses.
SPTs thus map guest virtual addresses to guest physical
addresses. In most cases, a SPT in SecPod is a simple
replica of the kernel’s page table (unless a memory safety
violation is detected and rejected). Shadow paging in Sec-
Pod is thus straightforward to implement. This is in stark
contrast against shadow paging in virtualization, which
is one of the most complicated modules in a hypervisor
due to its support of many paging modes of x86 and the
intricate out-of-sync shadowing. Shadow paging in SecPod
is also more efficient than the traditional shadow paging –
updating SPTs in SecPod take a fast context switch, instead
of a much slower world switch in virtualization. In short,
SecPod keeps both the simplicity and efficiency of the nested
paging. Even though shadow paging has long been used in
virtualization, it is, to the best of our knowledge, the first
time to be proposed in this architecture.

The kernel delegates its page tables and all paging-
related operations to the secure space, such as page table al-
location, page table updates, task switches (to write to CR3),
and TLB flushing. The secure space exposes, through the
entry gate, a service for each of these operations. To delegate
these operations, we could replace every paging operation
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in the kernel with a call to the respective service in the
secure space. Fortunately, for kernels that can run in a para-
virtualized (PV) VM [13], these hooks have already been em-
bedded into the kernel. For example, the Linux kernel has a
pvops framework that can figure out at run-time whether it
is running in a virtualized system and accordingly switch to
the optimized low-level operations. The pvops framework
consists of several groups of low-level operations, such as
pv_time_ops, pv_cpu_ops, pv_mmu_ops, and pv_lock_ops
(defined in file arch/x86/include/asm/paravirt_types.
h). We can repurpose pv_mmu_ops to implement paging del-
egation (Section 4.1). For a kernel without the PV interface,
we can potentially patch the kernel to implement a similar
interface.

3.2.1 SecPod Address Space Layout

Figure 6 shows the layout of the normal and secure spaces.
The normal space, as usual, consists of the kernel and the
user space. The kernel is mapped at the same location in the
secure space as in the normal space. Accordingly, a security
tool in SecPod can access the kernel as if it is running
inside it since key kernel data structures remain at their
supposed locations. This helps mitigate the semantic gap
problem [23]. The kernel memory is set to non-executable
in the secure space to prevent security tools from executing
the (untrusted) kernel code. In the secure space, the secure
code and its data are placed in the lower address space
because the kernel usually sits at the top (e.g., the Linux
kernel often occupies the top 1GB of the address space). The
secure code provides security tools with a compact library
of useful functions such as malloc, free, and string
functions. The secure data includes a repository of shadow
page tables and several hash-based data structures for fast
index of that repository (Section 3.2.3). The entry gate is the
only entrance to the secure space from the normal space,
while the exit gate returns to the normal space. Both gates
should be mapped at the same location in the normal and
secure spaces because the page table is reloaded during
each context switch, and the page-table-reloading code is
architecturally required to remain unchanged before and
after a context switch [24]. There is also a shared page to
pass data between two spaces.

The memory for the secure space is allocated from the
kernel when the secure space is created. It is subsequently
removed from the kernel so that the kernel will not use it for
other purposes. We enforce W ⊕X in the secure space; i.e.,
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the secure space can be either writable or executable, but not
both simultaneously [3]. This thwarts code injection attacks
against the secure space in case the security tool contains
exploitable vulnerabilities. Other attack mitigation mecha-
nisms can also be employed to provide stronger protection
of the secure space [2], [25].

3.2.2 Secure and Efficient Context Switch
SecPod implements the page-table based isolation. To switch
the spaces, we need to load the page table of the next
space into CR3. The secure space only has one page table,
the SecPod page table, but the normal space has many
shadow page tables, one for each user process. We need
to ensure the security and atomicity of context switches.
To this end, the entry gate saves the kernel state to the
stack (generic registers and interrupt enable/disable status),
clears the interrupt (twice), and then enters the secure space
by loading its page table and stack to the processor. This
process has been described in detail by earlier papers [9],
[14]. The exit gate performs the opposite operations in the
reverse order to return to the normal space.

To prevent the kernel from subverting the secure space
by loading a crafted page table, we request the hypervisor
to intercept and check every write to CR3 by the guest (Sec-
tion 3.3). However, trapping every CR3 write could cause
substantial performance overhead due to frequent context
switches. To reduce the overhead, we leverage a hardware
feature called CR3 target-list [24]. Loading CR3 with one of
the four page tables in the CR3 target-list will not be trapped
by the hypervisor. This feature has been employed by earlier
work for similar purposes [9], [14]. The major difference lies
in how memory is virtualized. The previous systems use
shadow paging to virtualize the guest memory. Guest task
switches are thus handled by and in the hypervisor. This
provides a convenient opportunity to update the CR3 target-
list (CR3 target-list can only be updated by the hypervisor).
On the downside, this prevents these systems from taking
advantage of nested paging. SecPod is designed to avoid
this problem.

The hypervisor in SecPod uses nested paging, and the
guest delegates its paging operations to the secure space,
including task switches. Ideally, task switches in the guest
should not involve the hypervisor, just like in the normal
nested paging. However, there are many shadow page
tables for the guest yet the CR3 target list can only hold
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four page table roots. The entry gate will never cause any
VM exits because the SecPod page table is locked in the
list. But the exit gate will if the SPT for the normal space
is not in the list. Neither the kernel nor the secure space
can update the CR3 target-list because they both run in
the guest mode. To address that, we allocate a Fixed Top-
Level Page Table (FTLPT) in the secure space and copy the
top-level page table of the next SPT to it during the task
switch. As such, SecPod appears (to the hardware) to be
using only two page tables, FTLPT and the SecPod page
table. Both of them can be registered in the CR3 target-list.
Therefore, legitimate context switches between the normal
and secure spaces will not be trapped by the hypervisor. Our
prototype uses the PAE (Physical Address Extension) mode
of x86 [24], in which the top-level page table consists of four
entries and can thus be copied quickly. Most modern Linux
distributions by default use the PAE mode in their kernels
because the NX (non-executable) bit is only available in this
mode. We would like to emphasize that FTLPT is a part of
the SPT pool in the secure space and thus is not accessible by
the kernel. Note that we cannot use PCID (Process Context
Identifier, also known as ASID) to tag the TLB – the TLB
needs to be flushed during context switches because FTLPT
translates addresses for many processes. Moreover, PCID is
set in the CR3 register, but the CR3 target-list can only be
changed by the hypervisor.
Context Switch Optimization: CR3 target-list allows SecPod
to utilize in-VM context switches (instead of world switches)
to handle page table updates. Nevertheless, context switch
is still a relatively expensive operation because it causes
TLB to be flushed and the instruction cache polluted (by
the secure code). To reduce this overhead, we can employ
the lazy page table update: updates to page tables will
not take effect unless the TLB is freshened with the new
translations. Therefore, we can temporarily delay the page
table updates until the TLB is flushed by the kernel, either
explicitly using special instructions (e.g., invlpg) or implic-
itly through task switches. This is technically similar to the
out-of-sync shadow paging in hypervisors like Xen [13], in
which shadow page tables are not synchronized with guest
page tables all the time. They are re-synchronized when
necessary. It is also similar to the asynchronous, exception-
less system call handling [26].

3.2.3 Page Table Update and Validation
The kernel delegates paging to the secure space to prevent
unauthorized modifications to its page tables. It leverages
the para-virtualized MMU interface (pv_mmu_ops) to for-
ward low-level paging operations to the secure space. Fig-

ure 7 illustrates how a new level-3 (L3) page table is created
and filled. When the kernel needs to allocate a new L3 page
table, it sends the request to the secure space (¬ in Figure 7),
which responds by allocating a blank L3 page table from the
SPT pool and linking it to the parent shadow page table (­) .
The mapping between the GPT and the SPT is then recorded
in a hash table for fast indexing (®). When new page table
entries are added to the GPT later, it is synchronized to the
associated SPT only if no violation of memory protection
is found (¯). The verifier uses several hash tables for fast
fact checking. The secure space has full control over the
kernel’s memory protection. Any updates to shadow page
tables must be vetted by the secure space. By default, the
secure space enforces the normal/secure space isolation and
W ⊕X for the kernel:

Normal/secure space isolation: this policy prevents the (un-
trusted) kernel from manipulating the secure space memory.
Specifically, the kernel is prohibited from mapping any of
the secure space memory, except the entry and exit gates at
their fixed location. For each request to change a shadow
page table, SecPod checks whether the physical page be-
longs to the secure space and whether the virtual address
overlaps with the two gates (one code page and one data
page). The update is denied if either test returns true. By
doing so, the kernel cannot map the secure space memory
or change the gates.

Kernel W ⊕X : Kernel code integrity (W ⊕X) is essential
to many security tools [6], [8], [11]. Previous virtualization-
based systems leverage shadow paging in the hypervisor to
protect kernel integrity. SecPod provides the same level of
protection in the VM. We use a template-based approach to
enforce W ⊕ X . Specifically, modern kernels have already
deployed W ⊕ X (without protecting the page table) [3].
The initial kernel page table could serve as a template for
the kernel memory protection. For each update to the kernel
mapping, SecPod only needs to compare the new memory
protection against the template. Note that SecPod does not
intend to externally address weaknesses in the kernel’s
original W⊕X implementation (it is better to root-cause and
fix them in the kernel). Enforcing W ⊕X in the secure space
makes it much harder to bypass. Moreover, key kernel data
structures like the system call table are also write-protected
for both their virtual addresses and the physical contents.

Some kernel modules might periodically update the
access attributes of memory pages. For example, the Just-In-
Time (JIT) compilation [27] and the dynamic binary trans-
lation (DBT) technique [28] write the generated code to a
page and later make it executable. Currently, SecPod does
not protect kernel modules with dynamically generated
code since JIT/DBT might mark code cache pages writable
or executable from time to time. However, it is feasible
to port those tools to SecPod for a more secure JIT/DBT.
Specifically, code cache pages could be marked executable
in normal space, while these pages are set as writable in
the secure space. The JIT/DBT engines are also loaded into
the secure space. Therefore, the code cache in normal kernel
space is always executable without having to be set writable.
This can prevent the code cache from being maliciously
modified when it is being updated. Similar approach has
been proposed to protect the JavaScript JIT engine [29].
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TABLE 1: Trapped Sensitive Instructions.

Instruction Semantics
LGDT Load global descriptor table
LLDT load local descriptor table
LIDT load interrupt descriptor table
LMSW load machine status word
MOV to CR0 write to CR0
MOV to CR4 write to CR4
MOV to CR8 write to CR8
MOV to CR3 load a new page table
WRMSR write machine-specific registers

3.3 Execution Trapping

In SecPod, the kernel still has the necessary privilege to
execute critical system instructions. Without constraints, this
privilege could be misused to subvert the secure space,
for example, by loading a malicious page table or even
disabling paging. Hence, it is necessary to control the in-
structions executed by the guest. Simply disallowing these
instructions in the kernel’s binary does not work because
the x86 architecture has variable instruction lengths and
“unintended” instructions can be created out of legitimate
instructions [30]. Previous software fault isolation systems
remove unintended instructions through compiler or binary
transformations [20], [31]. In SecPod, we instead configure
the virtualization hardware to trap these instructions, no
matter whether they are benign or “unintended”. Table 1
gives a (partial) list of sensitive instructions trapped by
SecPod. Each of them controls some important aspects of the
processor. For example, LIDT loads the interrupt descriptor
table, which determines how interrupts are handled; MOV
to CR0 writes to CR0, which consists of switches for many
CPU operation modes (e.g., paging enable, protected mode,
write-protect bits) [24]. Intercepting these instructions will
not cause large performance overhead because most of them
are not executed frequently after the kernel has initialized. A
notable exception is the MOV to CR3 instruction that is used
by the entry and exit gates for context switches. However,
our design guarantees that legitimate context switches will
not be trapped by the hardware (Section 3.2.2). Note that,
SecPod not only protects these registers, but also the associ-
ated data structures, such as the global descriptor table and
the interrupt descriptor table (Section 3.2.3).

After the hypervisor intercepts a sensitive instruction
executed by the guest, it notifies the secure space of the
event. This is similar to the signal delivery in traditional
OSes [32]. In fact, they both implement an up-call, except
that a signal is delivered from the kernel to a user process
while an event in SecPod is delivered from the hypervisor
to the secure space. When an instruction is intercepted, the
hypervisor saves the current virtual CPU state to the virtual
machine control block (VMCB) [24], and copies the saved
registers to the data page of the entry gate (to provide the
context of the violating instruction). The hypervisor then
updates the saved instruction pointer in VMCB to the entry
gate and returns to the guest. The CPU restores the guest
state from the VMCB and continues its execution to the
entry gate. The secure space recognizes that this is an up-call
from the hypervisor and handles the violation accordingly.

4 IMPLEMENTATION

We have implemented a prototype of SecPod based on the
popular KVM hypervisor [12]. Both the host and the guest
run Linux. We added about 100 lines of source code to the
hypervisor to set the CR3 target-list and trap the execution of
sensitive instructions. Another 800 lines of source code were
added to the guest kernel for paging delegation. The secure
space has about 2, 300 lines of source code. Our prototype
reserves 12MB of physical memory for holding the SecPod
code and data (including SecPod code/data, SPTs, and 64KB
for secure tools), and this trunk of memory is mapped in
the secure space at virtual address 0x200000. While SecPod
only occupies 8KB of the virtual address space in the normal
space (i.e., two shared pages for the entry/exit gates and a
shared buffer). In the rest of this section, we describe this
prototype in detail.

4.1 Paging Delegation
In SecPod, the guest kernel delegates its paging operations
to the secure space. This gives the latter full control over the
guest’s memory mapping and protection. In our prototype,
we leverage the Linux kernel’s pvops interface to forward
paging requests to the secure space. The pvops interface
originates from the Xen project’s efforts to create a generic
para-virtualized kernel that can adapt to different hypervi-
sors as well as the native, non-virtualized platforms. Pvops
groups the key para-virtualization operations into several
structures, such as pv_time_ops, pv_cpu_ops, pv_mmu_ops,
pv_lock_ops, and pv_irq_ops, and substitutes native op-
erations in the kernel with the corresponding PV operations.
For example, the native x86 system uses a single MOV to
CR3 instruction to load the page table. Pvops replaces it with
an indirect call to the pv_mmu_ops→write_cr3 function.
Each virtualization system, as well as the native platform,
provides its own implementation of these functions. Partic-
ularly, functions for the native platform are simple wrappers
of the original native instructions or functions. Pv_mmu_ops
has all the necessary functions for SecPod to delegate
paging to the secure space. For example, it has functions
for write_cr3, set_pte, set_pmd, flush_tlb_kernel, etc.
We only need to implement the required functions of
pv_mmu_ops with the respective services provided by the
secure space. In essence, this creates a MMU-only para-
virtualized platform as all the other PV operations remain
the same as the native platform.

Pvops replaces the native low-level hardware opera-
tions with indirect calls through the pv_xxx_ops structures.
This introduces some minor but measurable performance
overhead to native systems as some of these functions are
frequently used by the kernel. Kernel developers have to
reclaim the lost performance for native systems. Observing
that these functions remain unchanged after initialization,
they patch the kernel code to specialize each indirect pvops
call with a direct call to the corresponding native function,
and even inline simple operations like write_cr3. There-
fore, we need to replace the function pointers in pv_mmu_ops
before the specialization. Changes to the pv_mmu_ops struc-
ture after the specialization will not take effect. To this end,
we modify the kernel source code to set up the pv_mmu_ops
structure early in the boot process. Because the secure space
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has not been initialized yet, we use a temporary page table
as an in-kernel “shadow page table” and commit the page
table updates to it. The temporary page table has to be
statically allocated because the kernel memory allocator has
not be initialized either. After the secure space is ready to
run, we copy the temporary page table to a shadow page
table in the secure space.

Our guest kernel is essentially a native kernel with
the para-virtualized MMU. We intercepts the MMU op-
erations during the early boot stage. However, any page
tables created before that have to be explicitly copied to
the secure space. Swapper_pg_dir is such a case. It is
statically allocated in the kernel and serves as a master
page table for the kernel address space [33]. Each process in
Linux has its own user space memory mapping but shares
an identical kernel part copied from swapper_pg_dir. No
other processes except the idle task use swapper_pg_dir for
address translation. If swapper_pg_dir is being loaded to
CR3 for the first time, we simply create a new shadow page
table for it.

SecPod provides the entry and exit gates for the normal
space to call services of the secure space (e.g., to update a
page table). Because these gates are the only shared code be-
tween the two spaces, context switches have to go through
them. The secure space enforces a strict normal/secure
space isolation to protect these gates. The implementation
details of these gates resemble that of SIM [9]. Specifically,
the entry gate first saves the current CPU state to the stack
and disables the interrupt with the CLI instruction. It then
loads the SecPod page table into CR3 to enter the secure
space. The entry gate has to execute CLI again in the secure
space in case the (untrusted) kernel has skipped the first CLI
instruction [9]. Without a second CLI instruction if the first
is skipped, interrupts happened in the secure space halt the
(virtual) processor because the interrupt handlers are not
executable in the secure space, leading to a denial-of-service
attack. Finally, the entry gate loads the secure stack to the
stack pointer (the ESP register) and calls the service handler.
The exit gate performs the opposite operations in the reverse
order to return to the normal space. We also fill the unused
space around the entry and exit gates with nop instructions
to avoid accidental instructions out of otherwise random
bytes [30].

There is a subtle issue in the implementation of the
entry and exit gates regarding TLB (translation lookaside
buffer) [34]. TLB is a fast cache of the virtual to physical
address translation. To access the memory, the CPU first
searches the TLB for a matching virtual address. If a match
is found in the TLB (a TLB hit), the resulting physical
address is sent to the memory unit to access the data. If
the mapping is not cached by the TLB (a TLB miss), the
CPU walks the page table to translate the address and saves
the result in a TLB entry for future references. Therefore,
the TLB ultimately determines accessibility of the memory.
Simply reloading a new page table cannot guarantee that
the TLB contains fresh address translations because global
pages will not be flushed out of the TLB during context
switches (non-global pages are flushed each time a page
table is loaded. For example, one way to flush all the TLB
entries for the user-space is to simply reload the current
page table.) The Linux kernel sets its kernel pages to global

because all the processes share the same kernel memory
mapping. It is thus unnecessary to flush the kernel mapping
from the TLB during task switches. Note that global pages
are accessible regardless of the PCID settings. Therefore
using PCID cannot solve this problem.

Global pages could potentially cause serious vulnerabili-
ties in SecPod. For example, an attacker could synthesize1, in
an executable global page, a function that loads the SecPod
page table and manipulates the secure space memory. This
function remains executable after entering the secure space
because its mapping remains in the TLB after the context
switch. On the other hand, if the secure space memory is set
to global, it remains accessible after returning to the normal
space. To address this pitfall, we clear the global bits in
both shadow page tables and the SecPod page table, except
for the entry and exit gates. By doing so, the TLB will al-
ways contain fresh address mappings after context switches,
avoiding the aforementioned pitfalls. The entry and exit
gates can be set to global because their memory is protected
by the secure space and they do not contain enough useful
gadgets for return-oriented programming [30].

4.1.1 Page Table Update Batching
As previously mentioned, TLB allows us to batch page table
updates because these updates only take effect when loaded
into TLB (Section 3.2.2). Thus we could use TLB reloading
operations as checkpoints. Guest page table updates inbe-
tween checkpoints can be temporarily cached without being
committed to shadow page tables (SPTs) in the secure space.
Specifically, we allocate a shared page of memory for the
kernel and the secure space. If a paging operation can be
delayed, we save its information in that page and directly
return to the kernel. The kernel acts as if the change has
been committed to the corresponding SPT. This should not
cause any problems as the kernel is not supposed to actually
use the translation until the TLB is freshened. If a paging
operation cannot be delayed, SecPod immediately enters the
secure space and commits all the pending operations to SPTs
in chronological order.

SecPod delegates the kernel’s paging operations to the
secure space using the pv_mmu_ops interface. We found
that most of the pv_mmu_ops operations can be deferred.
For example, alloc_pte(/_pmd/_pud) allocates a new
shadow page table. The new SPT cannot be used for ad-
dress translation until it is mapped into the address space
(by another pv_mmu_ops operation). Moreover, operations
like pte_/pmd_update and pte_/pmd_clear have to be
followed by a flush_tlb operation to become effective.
Flush_tlb is one of the checkpoint operations. The other
two types of checkpoint operations are write_cr3 and
set_pte: write_cr3 switches to a new page table by
reloading the cr3 register. This operation implicitly flushes
the TLB. As such, write_cr3 is considered a checkpoint
operation; Set_pte (including its variants) interestingly is
another checkpoint operation. It is used to set a pte entry in
the last level page table 2. If the entry is originally marked
as non-present (i.e., an invalid mapping), there is no need to

1. This can be achieved with the return-oriented programming since
SecPod prevents code injection to the kernel.

2. X86 uses multiple levels of page tables. Setting the last level page
table entry makes it ready for address translation.
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flush the TLB for the change to take effect. This is because
the TLB of the x86 architecture does not cache invalid
mappings. A re-read of the address automatically loads
the new translation (from the page tables) into the TLB.
Therefore, set_pte should be considered as a checkpoint
operation as well.

Page table update batching only slightly increases the
complexity of SecPod, but it can significantly reduce the
performance overhead as demonstrated by our experiments
(Section 5).

4.2 Security Tools Case Study

SecPod is an extensible framework for virtualization-based
security tools. A security tool running in SecPod is strictly
isolated from the vulnerable kernel, but still has flexible
visibility into the kernel. First, the kernel memory is mapped
identically in the secure and normal spaces (but with dif-
ferent protection). Key kernel symbols and data structures
thus can be accessed at their original locations. Second, any
changes to the kernel’s memory mapping can be intercepted
and adjusted, if necessary, because the kernel delegates its
paging to the secure space. SecPod also has a simple loader
and linker to dynamically load security tools, similar to the
kernel module support.

To demonstrate the flexibility of the SecPod framework,
we have built two security tools with SecPod. The first
tool detects and prevents unauthorized kernel code from
execution (e.g., kernel rootkits) [6], [7]. This tool is relatively
simple to implement in SecPod, assuming the cryptographic
hashes of benign kernel code are known. Specifically, it
registers a call back function for kernel page table updates.
If a new executable page is created in the kernel, it verifies
whether the hash of the page belongs to the hashes of benign
code pages. If so, the page is marked executable in the
shadow page table. Otherwise, it has detected an attempt to
execute unauthorized kernel code and raises an exception.
There are a number of challenges in implementing this
system. For example, when a kernel module is loaded, the
kernel needs to resolve the called kernel functions (e.g.,
printk) and patches the module with the correct offsets to
these functions. This effectively changes the page’s hash,
leading to a false positive if the hash is calculated on the
modified code. We solve this problem by reversing the
changes made by the kernel module loader and computing
the hash based on the clean code page. After that, we restore
the changes and verify that each patched function is an
exposed kernel function. Many such challenges have been
addressed by previous work [6], [7]. Moreover, we employ
a new feature called supervisor mode execution protection
(SMEP) in recent Intel processors to prevent the kernel
from executing user code. The x86 architecture allows the
kernel to execute user code with the kernel privilege. SMEP is
designed to specifically address this attack. Software based
defense is also available [35].

This tool provides a similar security guarantee as Patag-
onix [6] and NICKLE [7]. Both systems are based on the
then-current virtualization technologies, the Xen hypervisor
with shadow paging and hypervisors using dynamic binary
translation, respectively. In contrast, the implementation
based on SecPod can take advantage of nested paging.

Note that detecting unauthorized code solely in the NPT
is vulnerable unless all the code in the guest is authorized.
Otherwise, an attacker can manipulate the GPT, which he
has full control over, to map kernel code pages to the
unauthorized user code.

The second tool detects kernel malware using data in-
variants. Many kernel data structures are intricately inter-
connected. Kernel malware often inadvertently change their
connections. For example, all the runnable processes should
be contained in the “all-processes” list. Some kernel rootkits
hide a process by removing it from the “all-processes”
list. The process can still be scheduled for execution as
it remains in the runnable process list. Similarly, network
connections enumerated from the internal kernel data struc-
tures should match those observed from the user space (e.g.,
with the netstat command). As such, we could detect
kernel malware by checking kernel data invariants [36].
Our second tool focuses on the invariants that are often
targeted by kernel rootkits. For example, system call table
is frequently hooked by rootkits to hide malicious processes
and kernel modules. Our tool verifies that system call table
entries point to legitimate core kernel functions, not ones
in loadable kernel modules. Moreover, the Linux kernel
routinely uses structures consisting of function pointers
(similar to vtables in C++) to enable a generic design. For
example, structure file_lock_operations contains two
function pointers related to file locks. There are about 200
such structures. They are often hooked by rootkits to hide
malicious entities such as TCP connections. Our tool ran-
domly validates the integrity of those structures related to
files, processes, and network connections. For example, it
checks that all the TCP connections point to the original, un-
modified seq_operations structure (instead of a malicious
doppelganger created by rootkits). This tool is not complete
in case of the supported data invariants, but demonstrates
that SecPod is a practical framework to support this type
of security tools: the tool is protected from the potentially-
compromised kernel, but still has direct access to key kernel
data structures (Section 3.2.1).

The tools we have implemented in secure space have
almost the same performance impact on the whole system
as the tools implemented inside the kernel. But the security
tools in SecPod are much more secure as SecPod provides
better memory isolation. Moreover, we expect SecPod en-
abled security tools are more efficient than tools imple-
mented in a SPT based hypervisor. First, a SPT-backed VM
is less efficient than a NPT-backed VM (as we have shown in
Section 2). Second, even without performance consideration,
it is hard to implement a security tool in the hypervisor. This
is because security tools in hypervisor have to overcome the
semantic gap [23]. Meanwhile, the design of SecPod imposes
some constraints on the security tools. For example, they
cannot directly introspect user-space processes since the
user-space memory is not mapped in the secure space; they
cannot perform DMA operations to access the guest VM’s
devices such as the virtual disk; and they cannot execute
guest kernel functions (e.g., to kill a malicious process) since
the guest kernel is deemed untrusted. Nevertheless, these
constraints do not impair the effectiveness of our main focus
– to introspect the guest operating system kernel.
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5 EVALUATION

In this section, we evaluate the security and performance of
our SecPod prototype. All the experiments were conducted
on a physical machine with a 2.5GHz Intel Core i5 CPU and
8GB of memory. The host system runs Ubuntu 12.04 LTS
with a kernel version of 3.11.0. The guest is configured with
2GB of memory, and runs Ubuntu 12.04 LTS Server with a
kernel version of 3.10.32.

5.1 Security analysis
We first evaluate the security guarantee of SecPod by an-
alyzing how SecPod can prevent various attacks. We orga-
nize these attacks from four perspectives: memory isolation
violation, instruction misuse, malicious address translation
redirection and malicious devices, with a focus on the first
three. Malicious devices can subvert the secure space (and
the hypervisor) via DMA attacks. This can be prevented
using IOMMU. Due to the space limit, we did not report
the security evaluation for the DMA attack. Curious readers
could refer to [37] for more details.

Memory isolation violation: a key requirement of Sec-
Pod is to strictly isolate the security tool from the vulnerable
kernel. This isolation is enabled by the synergy of SecPod’s
two key techniques: paging delegation and execution trap-
ping. The first category of attacks attempts to maliciously
modify the secure space memory. Because the secure space
memory is not mapped in the normal space (except the entry
and exit gates), the attacker cannot directly change it. In-
stead, the attacker has to map the secure space memory into
the normal space directly or by tricking the secure space to
do so. Both attacks are prevented in SecPod. First, the kernel
delegates its paging operations to the secure space. Its own
page tables are never put in effect as prevented by execution
trapping. Shadow page tables in the secure space are not
directly accessible by the compromised kernel either. Second,
the kernel might request SecPod to map the secure space
memory to the normal space. This is foiled by SecPod’s page
table update validation which enforces the normal/secure
space isolation. Specifically, it disallows the normal space
from mapping any physical pages of the secure space, and
protects both the virtual address and the physical content
of the entry and exit gates. Note that the attacker could
write any values into the shared memory page. However,
he cannot deceive the secure code to unmap the secure
space or modify the kernel memory mapping because the
secure code checks the memory mapping operations against
malicious mapping modifications. While an attacker could
write junk information to the shared memory and make it
full, leading to a deny-of-service attack. The SecPod secure
code could detect the frequent bad requests and notify the
hypervisor of the anomalous events.

Instruction misuse: the second category of attacks tries
to subvert the secure space by misusing existing instruc-
tions. No new code can be injected to the kernel as SecPod
enforces W ⊕ X for the kernel, but code reuse attacks like
return-oriented programming (ROP) [30] may still succeed
due to the lack of control flow integrity [25]. In addition,
the kernel still has the required right to execute privileged
instructions. For example, it could load a crafted page table
that allows manipulating the secure space. We address this

type of attacks by trapping and vetting the execution of
critical instructions by the kernel, such as MOV to CR3 (Ta-
ble 1). SecPod ensures that loading a page table other than
the two legitimate ones will be trapped and denied. It also
protects the associated data structures for instructions like
LGDT. Since the kernel cannot load arbitrary page tables, it
might try to enter the secure space with interrupts enabled.
This can be achieved through the entry gate, for example,
by skipping the first CLI and triggering an interrupt right
before the second CLI. The CPU would then execute the
interrupt handler in the secure space. Our design can foil
this attack because the interrupt handler is not executable
as soon as the CPU switches to the secure space. Never-
theless, this might cause the virtual CPU to halt because
of the non-executable interrupt handler. The attack can also
be launched with the return-oriented programming (ROP).
Normally, as soon as the CPU enters the secure space, the
kernel code becomes non-executable and the ROP program
cannot continue. However, there is a subtle case in which
the ROP program switches to gadgets in the secure space
upon entering it (the secure space has its own code and stack
data, which satisfies the basic requirement of conducting
a ROP attack). By doing so, the program can continue
running across the context switch because the attacking
stack is mapped in the secure space. This attack overall
is hard to use because the secure space might not contain
enough useful gadgets. It can also be mitigated by applying
existing ROP defenses to the secure space, such as control
flow integrity [25], code randomization [2], and systematic
removal of gadgets [5].

Address Translation Redirection Attack (ATRA): Jang
et al. proposed an attack that can bypass the hardware
memory monitor by directly modifying the page table re-
lated kernel objects [38]. Specifically, they wrote a kernel
rootkit to modify the page table entries and redirect the page
table pointers to the compromised ones (i.e., the maliciously
constructed page table objects). By doing so, the actual
kernel memory used by the system is redirected to a place
that is not monitored by the hardware. While with SecPod’s
paging delegation, all the effective kernel page tables are
maintained in the secure space. Any malicious attempts to
modify the page tables will be intercepted and vetted by the
secure code. Specifically, the SecPod secure code will notice
that there is no corresponding page table entry in the SPT
pool if someone has launched a memory-bound ATRA. More-
over, the attacker cannot directly modify the CR3 register
value (i.e. the CR3-ATRA) as SecPod’s execution trapping
traps every unintended CR3 loading (the intended, benign
CR3 values are maintained in the CR3-target list as we
described in Section 3.2.2). The authors also discussed the
difficulty to prevent ATRA attack on hypervisor-based vir-
tual machine introspection system (Appendix A.2 in [38]).
They suggest that “NPT allows guest kernel to modify
its page tables ... and the removal of the write-protection
in guest page tables would make the mitigation of ATRA
more difficult”. The design of SecPod securely re-enables
those hypervisor-based introspection systems to run on the
hardware with NPT.

Synthetic attack: to further validate the security of Sec-
Pod, we create a synthetic kernel rootkit that hooks the
system call table to intercept system calls like sys_read and
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Fig. 8: LMBench Overhead.

sys_mkdir. Our experimental security tool can detect the
loading of the malicious rootkit because its hash is not in the
list of hashes of benign code pages. Even without this tool,
SecPod can detect the rootkit’s attempts to modify the (read-
only) system call table – the rootkit calls a kernel function
to make the syscall table writable. This request is forwarded
to the secure space and subsequently denied because the
secure space does not allow the syscall table to be changed.

5.2 Performance Evaluation

To evaluate the performance of SecPod, we experimented
with micro-benchmarks, SPEC INT2006, and application
benchmarks. The micro-benchmarks measure SecPod’s im-
pact to fine-grained operations, such as system calls; SPEC
INT2006 quantifies the performance overhead introduced
by SecPod for CPU- and memory-intensive workloads; and
the (I/O-intensive) application benchmarks measure the
overall system performance under SecPod. All the exper-
iments were repeated three times and the average results
are reported, except for ApacheBench which was repeated
ten times. SPEC INT 2006 was measured in the reportable
run mode. We noticed that the deviation is negligible for
most of these experiments. Apachebench has a just slightly
higher deviation than others that is reported as error bars
in Figure 10. We compared the performance of SecPod, with
and with-out page table update batching (for brevity, we
call page table update batching just batching), to that of an
unmodified VM backed by the nested paging (the baseline).
SecPod’s VM is also backed by the nested paging. However,
its paging operations are expected to be less efficient than
the baseline because they are delegated to the secure space.
Note that SecPod relies on a per-VM (guest OS) secure space
for the paging delegation. Thus the performance degrada-
tion will not spread across the VMs, so that SecPod could
be easily scaled. Even though we did not compare the per-
formance of SecPod to that of the VMs backed by shadow
paging, previous benchmarks demonstrate that Intel EPT
provides substantial performance gains over shadow pag-
ing for most tested benchmarks. For example, Intel EPT can
achieve an acceleration of up to 48% for MMU-intensive
benchmarks [15].

5.2.1 Micro-benchmarks
Figure 8 shows the performance overhead of SecPod for
LMBench. LMBench is a set of benchmarks to measure the
system call performance. Our prototype incurs less than 5%

overhead for most of the system calls LMBench tests, such
as open, close, signal_install, and stat. These system
calls do not contain operations that require services from the
secure space. Consequently, the impact of SecPod over these
system calls is minimal. The performance degrade is prob-
ably caused by normal task switches (of other processes)
during the tests. On the other hand, system calls that involve
page table operations suffer most. Particularly, fork has the
highest overhead (56%) for the SecPod prototype without
batching, followed by execve, mmap, file creation, and
context switch (all at around 20%). Most of these system
calls involve heavy page table operations. For example, the
fork system call creates a child process that duplicates the
parent process’s address space (with copy-on-write) [32],
and each task switch in SecPod requires an extra loading
of the SecPod page table (Section 3.2.2). Batching can sig-
nificantly reduce this overhead by committing updates in
batches (Figure 8). For example, the overhead of the fork
system call was reduced from 56% to 31%. In addition,
the mmap test case has slightly lower latency than even the
baseline. We suspect that batching can reduce the times TLB
is flushed. On average, SecPod and SecPod with batching
introduce about 12% and 7% performance overhead for
LMBench, respectively.

5.2.2 SPEC INT2006
We measured the performance overhead of SecPod with the
SPEC INT2006 benchmark suite. SPEC INT2006 consists of
several CPU-intensive benchmarks, stressing the system’s
processor and memory subsystems. The results are reported
in Figure 9. For the majority of these benchmarks, SecPod
has the similar performance (less than 2% overhead) as
the baseline Linux, with or without batching. This result
is expected because those benchmarks are CPU-intensive
without large memory footprints. The high overhead related
to process creation (e.g., fork) is amortized by the relatively
long execution time of those benchmarks. The 403.gcc
benchmark has the highest overhead for SecPod, at around
8%. This benchmark is based on gcc version 3.2. It has 9
input workloads (i.e., pre-processed C code). Most of these
workloads have large and fluctuating memory footprints,
ranging from 300MB to 800MB 3. For example, input
s04.i and g23.i both use more than 800MB of memory at
the peak, and about 100MB and 250MB of memory at the
bottom, respectively. Naturally, this kind of workloads can
lead to higher performance overhead for SecPod. On aver-
age, SecPod introduces about 1.3% performance overhead
for the SPEC INT 2006 benchmark suite.

5.2.3 Application Benchmarks
To measure SecPod’s impact on the overall system perfor-
mance, we experimented with two server side benchmarks
(ApacheBench and SysBench) and one desktop application
(firefox Kraken benchmark). ApacheBench is a program to
measure how fast the system can process web traffic. In this
experiment, we run the Apache server (2.2.22) in the VM,
and ApacheBench on the host Linux. Figure 10 shows the
throughput of the Apache server with regard to different
file sizes (from 1KB to 1MB). Each file was generated by

3. http://hpc.aut.uah.es/informes/TR-HPC-01-2009.pdf

http://hpc.aut.uah.es/informes/TR-HPC-01-2009.pdf
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collecting random data from the /dev/random device. For
file sizes up to 16KB, the overhead of SecPod is less than
9% and increases to about 22% for 512KB files and 27%
for 1MB files. When the file size increases, the kernel needs
to allocate and update the page table more frequently to
accommodate frequent file accesses, leading to a relatively
high performance overhead. In comparison, SecPod with
batching has much lower performance overhead than that
without batching. For example, batching reduces the over-
head from 22% to just 7.8% for file size 512KB, and from
27% to just 10% for file size 1MB. Overall, batching is an
effective performance optimization to SecPod for memory-
intensive applications.

SysBench is a suite of multi-threaded benchmarks to
evaluate the performance of a database system under in-
tensive workloads. We use SysBench to measure SecPod’s
impacts on the file I/O and the MySQL processing. Both
experiments are repeated with many different numbers of
threads. In the file I/O experiment, we measure the through-
put using 128 files (1GB in total) and a block size of 16KB.
The results are shown in Figure 11. The largest overhead is
2.4%. We also measure the MySQL performance with Sys-
Bench’s online transaction processing (OLTP) benchmark.
Specifically, we build a MySQL database with 1, 000, 000
entries and query the database using various numbers of
threads. The results are shown in Figure 12. The perfor-
mance loss is in the range of 2.3% to 8.5% with an average of
5%. Additionally, SysBench is an I/O-intensive benchmark.
Batching thus could only slightly improve the performance
of SecPod.

To measure SecPod’s impact on desktop applications, we
run the Kraken benchmark with the firefox browser. Kraken
is a browser benchmark testing the Javascript performance,
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Fig. 13: Firefox Kraken Benchmark Overhead.

such as AI computing, audio, and image processing. The
results are reported in Figure 13 (normalized to the baseline
NPT-backed Linux VM). For most of the test cases, SecPod
introduces less than 2% performance overhead, except the
audio processing test case which has a higher overhead
(about 7%). This is likely because the audio processing test
includes a loop that handles a big chunk of memory 4, which
may incur more frequent page table updates. For CPU-
intensive tests like AI and stanford crypto, SecPod with
batching does not have significant performance advantage
over SecPod without batching. But we could still observe the
relatively large performance benefit for memory-intensive
tests like image processing and json.

6 RELATED WORK

Virtualization-based Security: the first category of the re-
lated work is a long stream of virtualization-based secu-

4. https://wiki.mozilla.org/Kraken Info

https://wiki.mozilla.org/Kraken_Info
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rity systems with diverse focuses, such as malware analy-
sis [39], virtual honeypot [40], kernel rootkit detection and
prevention [5], [41]. In particular, virtualization has been
applied often in the context of virtual machine introspection.
Livewire pioneers the concept of “out-of-VM” introspection
to understand the in-VM states and activities by parsing the
raw VM resources [42]. Semantic gap is one of the main
challenges for VMI systems because VMI aims at semanti-
cally inferring the in-VM activities and states from the raw
VM data (e.g., memory, disk). A number of recent systems
try to address this challenge from different perspectives [4],
[9], [43], [44]. For example, Virtuoso [43] can effectively au-
tomate the process of building introspection-based security
tools. SIM is the most closely related system. It firstly lever-
ages the CR3 target-list to effectively and efficiently turn out-
of-VM monitoring in-VM. SIM is a monitoring framework
while SecPod targets at supporting generic virtualization-
based systems. Particularly, SecPod creates a trusted exe-
cution environment for the security tool by combining two
key techniques, paging delegation and execution trapping.
In addition, SecPod uses the CR3 target-list differently to
support the nested paging (Section 3.2.2). VMI systems can
be integrated with and benefit from SecPod’s code integrity
guarantee and fine-grained page table monitoring.

Virtualization is also a popular choice of platforms to
enhance the kernel or application security [6], [7], [11], [14],
[45]. For example, Overshadow is designed to protect the
secrecy of the user data even if the kernel is completely com-
promised [45]. Patagonix protects the kernel code integrity
through virtualization-based code identification [6]. Hook-
Safe addresses the protection granularity problem through
systematic hook redirection [11]. Most of these systems re-
quire a reliable kernel code integrity. Otherwise, an attacker
could subvert their protection by injecting malicious code.
SecPod is an ideal platform for these systems. Security tools
in SecPod are strictly isolated from the vulnerable kernel,
but still have the visibility of an in-kernel tool. As a proof-of-
concept, one of our implemented security tools for SecPod
tries to prevent the unauthorized code from executing in
the kernel. This provides a security guarantee similar to
Patagonix [6] and NICKLE [7] (Section 4.2).

Virtualization-based systems, including SecPod, assume
that the hypervisor is trusted due to its smaller code base
and attack surface. However, the bloated code base of mod-
ern hypervisors and recent attacks put this assumption into
question. There have been a series of recent efforts in pro-
tecting the hypervisor integrity, via formal verification [17],
[46], security enhancements [19], and size reduction and
disaggregation [18], [47]. These systems can be naturally
integrated with SecPod to provide a strong foundation of
security.

Kernel/User Application Security: the second category of
related work includes a large number of research efforts
in the kernel and user application security. Address space
layout randomization (ASLR) [48] and data execution pre-
vention (DEP) [3] are two popular exploit mitigation mech-
anisms in modern kernels. These kernel-level protection
schemes suffer from the pitfall that the page table is not
protected from exploits. SecPod reliably enforces DEP for
the kernel. ASLR and DEP could be bypassed mainly by

return-oriented-programming (ROP). Control flow integrity
is an effective defense against most control flow attacks,
including ROP, by mandating that run-time control flow
must follow the program’s control flow graph [25]. Most of
the previous CFI systems target user applications. They rely
on the kernel to provide the necessary memory protection of
the code and read-only data. Recent efforts to adapt CFI to
the kernel turn to virtualization for essential supports [49].
For example, KCoFI [49] leverages the Secure Virtual Archi-
tecture [50] to interpose the software and hardware interac-
tions. All software, including the kernel, is compiled to the
virtual instruction set of SVA. Kernel CFI can also be support
by SecPod as it provides both strong isolation and reliable
memory protection for security tools. There is also a series
of prior efforts in implementing software fault isolation
(SFI) [31], [51], [52]. SFI aims at confining untrusted code in
a host application. For example, Native Client [31] uses two
layers of sandboxes to safely run untrusted native plugins in
a web browser. SFI technologies have been utilized to isolate
untrusted device drivers in the kernel [14], [21], [51].

TZ-RKP [53], HyperSafe [19], and nested kernel [54]
are three closely related systems. TZ-RKP leverages the
ARM TrustZone to protect the kernel running in the normal
world. Specifically, it instruments the kernel to prevent it
from executing certain privileged instructions or updating
page tables. These operations instead must be handled by
the secure world. However, the instrumentation-based in-
struction access control of TZ-RKP is not directly applicable
to the x86 architecture because x86 has variable instruction
lengths and thus unintended privileged instructions can be
created out of the existing ones [30]. This problem can be
solved by adopting the techniques of NaCl [31]. HyperSafe
write-protects the hypervisor page table and uses the x86
write-protect (WP) bit to allow benign page table updates.
It further enforces the control flow integrity [25] to prevent
that from being bypassed. Nested kernel similarly protects
page tables for the OS kernel, but enforces the kernel code
integrity and removes unintended privileged instructions
from the kernel code (instead of enforcing CFI). SecPod
also controls the guest page table updates though paging
delegation, but its design revolves around the goal to pro-
vide security tools with an extensible framework that is not
only compatible with the recent virtualization hardware,
but also allows them to intercept key events in the guest
kernel. For example, the separation of the normal and secure
spaces isolates security tools from the untrusted kernel and
simultaneously enables an easy access to the kernel data. Re-
cently, Intel introduced a security enclave technique called
Software Guard Extension (SGX). This trusted executing en-
vironment can prevent even the privileged system software
(e.g., hypervisor, OS kernel, and BIOS) from compromising
the enclave’s code and data. We believe SGX could also
be used to provide an isolated executing environment for
critical system services as SecPod does.

Optimizing Boundary Crossing Calls: the third category
of related work consists of systems that use batching to
optimize boundary crossing calls (e.g., system calls). SecPod
delegates page table updates to the secure space. Each page
table update thus requires a relatively expensive round-trip
between the normal space and the secure space (though
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it is still much faster than a world switch). We reduce
this overhead by caching some page table updates and
committing them in batches. Batching has been used for
similar purposes in existing works such as the exception-less
system call [26], [55]. For example, Cassyopia is a compiler-
assisted system call optimization technique [55]. It proposes
the idea of system call clustering to reduce the number
of boundary crossing required [55]. FlexSC conducted a
detailed study of the system call cost, and proposes the
exception-less system call [26]. Specifically, the application
stores system call requests in a “system call page”, and the
kernel uses a dedicated kernel thread to asynchronously
process those requests. Similarly, sophisticated hypervisors
like Xen [13] and KVM [12] support out-of-sync shadow
paging in which shadow page tables are synchronized
with guest page tables when necessary. For example, Xen
shadow paging synchronization has implemented a copy-on-
write alike mechanism [56]. The Xen hypervisor temporarily
removes the write permission of the guest page tables while
maintaining an out-of-sync page list, and resynchronizes
the page list on page faults or context switches. Mean-
while, SecPod is built as a security framework. The primary
purpose of the secure space is to maintain the security
properties for the kernel memory. Thus we use a RPC-like
(remote procedure call) mechanism. Moreover, SecPod does
not need to have complete memory virtualization support;
it simply maintains an identical shadow copy of the kernel
page tables. Consequently, SecPod SPT batching can use a
much simpler design; i.e., it caches all the page table update
requests in a buffer and late submits it.

7 SUMMARY

We have presented the design, implementation, and evalu-
ation of SecPod, a practical and extensible framework for
virtualization-based security systems. SecPod provides a
trusted execution environment for security tools. They are
not only strictly isolated from the vulnerable kernel, but
also have full visibility into it. Particularly, any updates to
the guest’s page tables can be intercepted and regulated by
these tools, allowing the fine-grained control over the guest
kernel’s memory protection. By using the in-VM shadow
paging, SecPod is fully compatible with the recent advances
in the hardware virtualization support, particularly the
nested paging.
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