2017 IEEE Symposium on Computers and Communications (ISCC)

Secure the Commodity Applications against Address Exposure Attacks

Xiaoguang Wang, Yong Qi
Department of Computer Science and Technology
Xi’an Jiaotong University, China
xiaogw @ stu.xjtu.edu.cn, qiy@mail. xjtu.edu.cn

Abstract—Remote server vulnerability exploit is one of the
most troublesome threat to the Internet security. An effective
defense against the remote vulnerability exploit is code ran-
domization, which randomizes the program code address to
disrupt the malicious payload execution. Unfortunately, code
randomization is particularly susceptible to address exposure
vulnerabilities; the leak of a single code or data pointer is
often sufficient to de-randomize the protected process. Existing
solutions either prevent part of the address exposures (e.g.,
code-pointer exposure only), or are too heavyweight (e.g., have
to involve a hypervisor software or a modified OS kernel).

In this paper, we propose AXIS that can provide existing
code randomization techniques with a comprehensive protec-
tion against address exposure. AXIS first redirects the code
pointers through an indirection table that is protected by
the execute-no-read memory segment. During the load time,
all static data will be relocated to random locations, which
breaks the fixed offsets between code and data. We have
implemented a prototype of AXIS with only a customized
compiler and a pre-loaded library. Our experiments show
that AXIS can successfully eliminate address exposure with
a minimal performance overhead.

1. Introduction

Remote server vulnerability exploit has been one of
the thorniest problems in computer security researches. By
feeding the vulnerable server with carefully constructed
payloads, attackers can lead the victim process to execute
the malicious code and finally take control of the server.
Code randomization is an effective defense against attacks
that rely on the exact locations or contents of the victim
process [1]. The randomized code will not be loaded at a
fixed address, which makes attackers difficult to construct
the malicious payload. Indeed, a branch of researches have
focused on randomizing the code at the granularity of code
binary [2], functions [3], pages [4], basic blocks [5], etc. Ad-
dress space layout randomization (ASLR), a coarse-grained
form of code randomization which shifts each individual
binary as a whole in the address space, has been widely
adopted by major operating systems [6], [7], [8]. Because
of its ubiquitous availability, ASLR has become one of our
most important defenses in computer system.

978-1-5386-1629-1/17/$31.00 ©2017 |[EEE

Despite its effectiveness, code randomization (including
ASLR) can be seriously weaken or even defeated by infor-
mation exposure vulnerabilities [9], which leak the victim
process’ memory layout or contents. Address exposure is
especially detrimental to ASLR systems. The leak of a single
pointer (i.e., address) is probably enough to de-randomize
ASLR, if the program binary is known. Most computers
have a large part of their software come from a small
number of vendors. For example, many Linux web servers
are based on the LAMP stack (Linux, Apache, MySQL,
and PHP/Perl/Python) from the leading Linux distributions.
This homogeneity makes it relatively easy to figure out
a remote software stack. In addition, a remote software
configuration might be identified through fingerprinting, a
technique that can distinguish software variations by their
unique behaviors [10]. Accordingly, we assume a powerful
yet realistic threat model in which the attacker can obtain the
executable binaries of the target system. Program binaries
contain a plethora of information useful for ASLR de-
randomization. With the binaries, a leaked code or (static)
data pointer allows the attacker to calculate the layout of
the whole address space: code pointers include various
types of instruction addresses, such as function pointers,
return addresses, jump tables, and PLT/GOT tables. They
all contain direct instruction addresses. Leaked data pointers
are equally effective in disclosing the code layout because
the code and the data have fixed offsets. In short, a complete
solution to this problem should eliminate address exposure
through both code pointers and data pointers.

Researchers have proposed solutions to solve code-
pointer based address exposure and memory exposure. For
example, XnR (eXecute-No-Read) system [11] modifies the
Linux kernel to prevent (most of) the process code pages
from being read. It leverages a sliding window to keep the
latest n pages both readable and executable, while setting
other code pages non-present. Readactor [12] further pro-
tects the code pointers from being leaked out by collecting
the function pointers into execute-only pages, and uses a
tiny hypervisor to make those memory pages execute-only.
However, a global data pointer or pointers in PLT/GOT
could also leak out the program memory layout. Fine-
grained code randomization systems, such as [3], [4], [5],
make attackers difficult to use a single leaked pointer to
figure out the full process memory layout. However, the
recent just-in-time ROP (JIT-ROP) attack [13] showed that



2017 IEEE Symposium on Computers and Communications (ISCC)

the attacker can recursively reads the program code through
a memory exposure vulnerability to discover all necessary
gadgets on demand.

In this paper, we propose AXIS (address exposure elimi-
nation for ASLR), a system that can eliminate address ex-
posure through both code pointers and data pointers. AXIS-
enhanced ASLR systems are significantly harder to exploit
than those not because address exposure will not leak critical
information about the code layout. AXIS has two major
components to turn a commodity server application into
an address exposure free process. The first component is a
customized compiler. It redirects the code pointers through
an indirection table that is protected by the execute-only
memory segment. This essentially substitutes the pointers
(e.g., function pointers, function return addresses, exception
tables, etc.) to the original program code with these to the
indirection table. Therefore, a leaked code pointer accord-
ingly will only reveal the indirection table addresses, but
not the real code addresses. The second component is
a standard loader extension. It relocates the static data to
random locations. This breaks the fixed offsets between the
code and the static data, making data pointer exposure much
less useful to attackers. Static data consists of global data,
PLT/GOT entries, as well as the indirection table generated
by the first component. Dynamic data, such as the heap and
the stack, have already been allocated at random locations
by ASLR. Pointers to them have no direct relation to the
code. We have implemented a prototype of AXIS based on
the open-source LLVM compiler and a pre-loaded library.
Our experiments with several popular benchmarks and ap-
plications show that AXIS can effectively reduce address
exposure through both code pointers and data pointers. Our
prototype only introduces a minor performance overhead
(e.g., 3.3% on average for SPEC CPU2006). Overall, we
consider the protection provided by AXIS is well worth this
performance overhead for most applications.

The rest of this paper is organized as follows: Section 2
gives an overview of the address exposure problem. We then
describe the design and the prototype of AXIS in Section 3.
The evaluation is presented in Section 4. Afterwards, we dis-
cuss the related works in Section 5. Finally, we summarize
the paper in Section 6.

2. Problem Overview

There are a wide spectrum of code randomization sys-
tems with different resilience to address exposure. In par-
ticular, ASLR only randomizes the bases of a program’s
executables. It does not change the internal layout or content
of the code. ASLR is easy to implement and has the best
compatibility — we only need to compile the program as
a position-independent executable and the OS kernel takes
care of the rest. However, it is also the most vulnerable to
address exposure. If the attacker can de-randomize a func-
tion pointer (e.g., the printf function is located at address
0x400000) or a pointer to some static data, he can infer the
complete code layout because functions and data have fixed
offsets from each other. Some other special pointers have

10,000 £

[ # of Code Pointers
[ # of Data Pointers

L T e

%, %, % %
U, oy, 2
v %

%, < gy 4, %z,
%y, Yy %

%, 2 Y e %, T

< K "

Figure 1: Code and Data Pointers in Several Applications

even worse effect on preserving address layout. For example,
PLT/GOT entries contain addresses of external functions,
which makes an attacker directly retrieve the code layout.

To quantify code and data pointers for a process, we
write a simple program to dump the process’ memory (via
ptrace [14]) and scan it for code and data pointers. Specif-
ically, we disassemble the program’s code, and consider a
memory word to be a code pointer if it points to the begin-
ning of a valid instruction. We consider a memory word to
be a data pointer if it points to the process’ static data and is
properly aligned (e.g., 4-byte aligned on 32-bit CPUs). Static
data consist of global variables and static local variables, i.e.,
the data sections and the BSS sections. We do not count data
pointers that point into dynamic sections, such as the heap
and the stack, because ASLR randomizes their locations.
Figure 1 shows the results of applying this tool to several
benchmarks and real-world applications. More than half of
the measured programs have hundreds or even thousands
code and data pointers. Note that this is an overestimation
of the actual numbers: the number of code pointers should
be fairly precise because the x86 architecture has variable
instruction lengths. The chance of a memory word collide
with a specific instruction boundary is low. The number of
data pointers is less precise, but should still be relatively
close to the truth because most programs have small static
data sections compared to their large address spaces (hence
the low possibility of false positive). The results also depend
on the program states, such as the current call stack. Overall,
this figure demonstrates that address exposure through code
pointers and data pointers is a realistic threat to ASLR.

Threat model: we assume a powerful attacker who
has access to the executable binaries of a victim process.
He can exploit address exposure vulnerabilities to obtain
code and data pointers, and disambiguate them through data
structure reverse-engineering. The target system may or may
not support fine-grained code randomization, but ASLR is
an integral defense (this represents the defense capabilities
of popular commodity operating systems). Leaked pointers
provide an effective pathway to de-randomize ASLR. How-
ever, we assume the target system could run on top of the
secure kernel [15], [16], therefore, the underlying operating
system can be trusted. Hardware side-channel attacks or
other clever attacks to hijack the applications could emerge
and require defences not described in this paper.



2017 IEEE Symposium on Computers and Communications (ISCC)

Direct Address Exposure
Code Pointer Indirection | Compile Time
Load Time

Indirect Address Exposur@——| Static Data Relocation
Figure 2: AXIS Overview

3. AXIS System

Address Exposure

3.1. Overview

AXIS aims at improving ASLR by eliminating ad-
dress exposure. An ASLR-protected process could be de-
randomized through either direct address exposure or indi-
rect address exposure. Code pointers are the major sources
of direct address exposure because they all contain explicit
instruction addresses. A leaked code pointer is catastrophic
to ASLR in our realistic threat model (Section 2). To solve
that, AXIS proposes a technique called code pointer in-
direction that transforms direct address exposure into the
indirect one (Figure 2). Specifically, AXIS creates a proxy
for each target of a code pointer to substitute it (common
code pointer targets include function entry points and return
sites). Code pointers now no longer carry addresses of the
original targets, but these of the proxies. For example, we
create a proxy for each function that has its address taken,
and substitute the function address with the proxy address.
A function pointer accordingly points to its proxy. All the
proxies are collected in a dedicated section, called the indi-
rection table. The indirection table has to be protected from
memory exposure because its proxies carry the addresses
of the original targets. Because each proxy is a short code
snippet and no legitimate code needs to read it, we can
protect the indirection table from memory exposure with the
execute-only memory. However, the exposure of the proxy
addresses could still de-randomize the process because each
proxy lies at a fixed offset to the code. A leaked proxy
address is just as effective as a leaked function entry point
in divulging the code layout. This essentially turns the
direct address exposure into the indirect address exposure,
which is eliminated by AXIS’ second technique — static data
relocation. Even though code pointer indirection might seem
to be a rather straightforward transformation, its interaction
with PLT/GOT complicates the design (Section 3.2).

The second form of address exposure is caused indirectly
by data pointer leaks. When the compiler builds a program,
it lays out the code and the data at fixed relative locations.
Offsets between program structures are hard-coded in the
generated code. For ASLR to randomize a program, it must
be compiled as a position-independent executable (PIE)
(gcc and 1lvm/clang both use the -fPIE -pie flags for
this purpose). A PIE program can be loaded at any location
in the address space: instead of hard-coding code or data
addresses, the program calculates their run-time addresses
using the PC-relative addressing mode. For example, to ac-
cess a global variable, the program first retrieves the current
program counter (PC), and adds an offset to it to get the
base of the Global Offset Table (GOT is a table generated by

Before AXIS After AXIS
text text
call *fp call *fp
_x X

Func_B:

Func_B: \
.data .data
w- fp: Func_B@ind_tbhl (W8

nd_tol Func_B@ind_thl: —

jmp Func_B -X

Heap Heap
w- w

Stack Stack

Figure 3: Function Pointer Indirection

the compiler to support dynamic linking [17]). The variable
address is then calculated by adding a second offset to the
GOT base . When ASLR randomizes a program, it relocates
the program as a whole and never changes the program’s in-
ternal layout. Consequently, leaked data pointers (including
pointers to the code indirection table) are equally harmful
as leaked code pointers. To remove this indirect address
exposure, we extend the dynamic loader to relocate static
data sections (e.g., .data, .bss, and .ind_tbl) to random
locations. This randomizes their fixed offsets to the code.
Data pointers are no longer directly tied to the code.

By combining these two techniques, AXIS can eliminate
address exposure through both code and data pointers. This
significantly raises the bar to exploit ASLR-based systems.
Our prototype of AXIS is source-code compatible with ex-
isting programs. There is no need to change the OS kernel or
the system loader. Code pointer indirection is implemented
as an extension to the LLVM compiler, while static data
relocation is implemented as a shared library pre-loaded into
the target process (using LD_PRELOAD). AXIS might also
be implemented with a static binary re-writer to achieve the
binary compatibility.

3.2. Code Pointer Indirection

Code pointers are the sources of direct address exposure.
AXIS creates a proxy for each code pointer target, and
converts code pointers to proxy pointers. All the proxies
are aggregated in a dedicated section (.ind_tbl). Because
proxies carry the addresses for the original targets in their
code, we protect the .ind_tbl section from memory ex-
posure with the execute-only memory. This will not cause
compatibility issues because no legitimate code needs to
read the proxies.

There are several types of code pointers, such as func-
tion pointers, return addresses, jump tables, and PLT/GOT
entries. Jump tables are often used by compilers to speed up
the switch/case statements. Each jump target entry handles
one case of the statement. A function pointer and a jump

1. Even though the compiler could generate the variable address by
adding its offset to the PC, it uses these two steps to reuse the GOT base.
It is an expensive operation on x86-32 to get the current PC.



2017 IEEE Symposium on Computers and Communications (ISCC)

Before AXIS After AXIS
text text
main: main:
call <printf@plt> X call <printf@plt> X
Plt{ printf@plt: - Plt|printf@plt: ”
jmp *got[K] jmp printf
.got .got
got[Kk]: printf w- got[k]: NULL rw-
Heap Heap
w- w-
Stack Stack
text| . o / text|
lioc | P libc | Printt:
-X X

Figure 4: PLT Specialization for Direct Calls

table entry can be supported by AXIS in the mostly same
way because they both carry a single instruction address
(function address v.s. basic block address). AXIS compiler
frontend converts function (and basic block) pointers to
proxy addresses to prevent direct address exposure. A func-
tion proxy consists of simply a direct jump to the original
function. Figure 3 shows how an indirect call through a
global function pointer is instrumented by AXIS. In particu-
lar, the function pointer now carries the corresponding proxy
address. At the load time, AXIS relocates the indirection
table (the .ind_tbl section) to the random location, and
further marks the indirection table execute-only. Therefore,
attackers cannot retrieve the code locations with the function
pointers. This process seems to be straightforward, but there
are hidden pitfalls originated from the compiler’s support of
dynamic linking.

Today’s programs rely heavily on common libraries for
their functionality, performance, and convenience. Large
programs like LibreOffice may utilize tens or even hundreds
of libraries. A large amount of memory will be wasted if
each program has its own copy of the used libraries. To
address that, many systems allow libraries to be shared
through dynamic linking: shared libraries are compiled as
position-independent code that can be executed from any ad-
dresses, while programs are built with structures for dynamic
linking, i.e., PLT/GOT (procedure linkage table/global offset
table) [17]. These structures allow the program to link to the
shared libraries that may have been loaded into the memory
by another program (Figure 4 left). At the same time, they
also introduce additional GOT-based direct address expo-
sure: the GOT table contains function pointers that need to
be dynamically resolved by the linker, and each PLT entry
indirectly jumps to the function pointer in the associated
GOT entry.

For direct calls to external functions, the compiler gen-
erates a PLT entry to represent a called external function.
For example, a call to printf is substituted by a call to
printf@plt, which indirectly jumps to the function address
in the associated GOT entry (Figure 4). Notice that a PLT
entry is essentially a proxy for the called function. We
could repurpose PLT entries to eliminate GOT-based address

Before AXIS After AXIS
text text
Func_A: Func_A:
call Func_B jmp csi@ind_tbl
retl: =X retl: -X
Func_& Func_B:
data .data
rw- w-
.ind_tbl| cs1@ind_tbl:
call Func_B
ret1@ind_tbl: X
jmp retl \
Heap rw- Heap rw-

stack stack
rw- retl@ind_tbl w-
L

Figure 5: Return Address Indirection

exposure (Figure 4). Specifically, we configure the linker to
aggressively resolve external function addresses during the
program start and fill them into the GOT table. Our loader
extension (Section 3.3) then replaces each applicable PLT
entry with a direct jump the actual target functions, and
wipes the related GOT entry. The PLT table is protected
from memory exposure by the execute-only memory.

Another major source of direct address exposure are
return addresses. Return addresses reside on the stack. Each
return address points to a call site, i.e., the instruction after
the call instruction. Return addresses are pushed to the stack
by call instructions. We apply the same transformation to
call sites as to functions: a proxy is created for each call site
and the return address is replaced by the proxy address. Fig-
ure 5 shows how return address indirection works. A proxy
for call site consists of two instructions: a call instruction
to the original function and a direct jump back to the call
site. The original call instruction is changed to a direct jump
to the proxy. At the run-time, when the function is called,
the program jumps to the proxy, which pushes the return
address to the stack and transfers to the called function. The
return address thus points to the proxy’s jump instruction,
instead of the real call site. When the function returns, the
processor pops the return address off the stack and executes
the corresponding jump instruction, which returns back to
the original call site. Therefore, any pointers on the stack
will point to a indirection table, instead of a code location.
However, proxy addresses (a.k.a. indirection table) can still
leak the code layout because they have fixed offsets to the
code. Our next technique, static data relocation, prevents
these indirection address exposure.

3.3. Static Data Relocation

Code addresses might be exposed indirectly through
pointers to static data (i.e., data not on the heap or the stack).
The compiler hard-codes the offsets between the code and
the data. ASLR does not change these offsets. It instead
moves the program binaries as a whole. Consequently, data
pointer leaks are as harmful as code pointer leaks: the
attacker only needs to add the correct offset to a leaked
data pointer to locate a gadget. To prevent indirect address



2017 IEEE Symposium on Computers and Communications (ISCC)

0617: e8 00 00 00 00 call 6lc<main+0xc>
061c: 58 pop %eax
061d: 81 cO e4 19 00 00 add $0x19e4,%eax

Figure 6: Computing GOT Base

exposure, AXIS leverages the unique structure of ASLR-
compatible programs to randomize these offsets.

Programs must be compiled as position independent
executables (PIE) to benefit from ASLR. Like shared li-
braries, PIE can be executed from any addresses. This is
enabled by two key PIE structures. First, the dynamic linker
resolves the run-time symbol addresses and stores them in
the PLT/GOT tables; Second, the program uses PC-relative
(program counter) addressing mode to reference data and
functions. For example, if the program wants to assign a
local function to a function pointer, it adds an offset to the
current PC to get the function address and stores that in
the pointer. To be precise, the function or data address is
calculated relative to the GOT table base, which in turn
is calculated relative to the current PC. This allows the
program to reuse the GOT base.

Unfortunately, the 32-bit x86 architecture has no direct
PC-relative addressing instructions. The PC-relative address-
ing mode is simulated by the compiler’s built-in functions
using the call instruction. For example, Figure 6 shows
a popular method to compute the GOT base. Specifically,
it makes a direct call to the next instruction. That is, the
address of the next instruction (pop %eax) is pushed to the
stack by the call instruction and further poped into register
eax. Eax thus contains the address 0x61c. An offset is then
added to the current program counter to get the GOT base.
The x86-64 architecture directly supports the PC-relative
address mode. The structure in Figure 6 can be replaced by a
single instruction, such as lea Ox1ba7 (%rip),’%rsi. Now,
the program can access its data and functions independent
of its load position.

AXIS relocates static data sections to prevent indirect ad-
dress exposure. These sections include .data, .bss, .got,
.plt, .ind_tbl (the indirection table of Section 3.2) etc.
Dynamic sections like the heap and the stack do not need
to be relocated because ASLR randomizes their locations
during allocation. To relocate sections, AXIS first configures
the linker to resolve all the symbols, and then relocates
them using a pre-loaded library. Pre-loaded libraries execute
before the main function. Accordingly, there is no need for
AXIS to modify the system linker/loader. AXIS also collects
information from the program binary (e.g., relocations) and
the /proc directory (e.g., the memory layout). For each
static data section, AXIS allocates an equal sized block of
memory at a random location with the mmap system call.
AXIS then copies the memory from the old section to this
new location, and fixes the affected instructions that access
these data (e.g., the instruction pattern shown in Figure 6).
To guarantee that no old data will ever be accessed again,
AXIS unmaps the original data sections from the process’
address space.

<Data> (randomized)

<Heap> DS

rw-
Cs

==X <Stack>

<Code> (randomized)

<Indirection Table>

Kernel

Figure 7: Segments Reorganized for Execute-only Code
Memory

3.4. Execute-only Memory

Execute-only memory plays an important role in defend-
ing ASLR against information exposure vulnerabilities. For
example, it can prevent JIT-ROP from reading the code of a
finely randomized program. However, current x86 proces-
sor does not explicitly support the execute-only memory
page, since executable code pages are always readable.
Researchers have explored to use EPT in hypervisor layers
to enable execute-only memory for a regular process [12].
However, the introduced hypervisor layer makes that solu-
tion bloated. AXIS makes a novel use of the traditional x86
segmentation, by reorganizing the CS/DS layout to enable
the execute-only memory.

Segmentation has been proposed long ago to support the
early x86 virtual memory system, but it was later superseded
by paging [18]. For backward compatibility reasons, current
operating systems set each of the segment’s boundary as
the whole virtual address space. For example, the code and
data segments (confined by the segment selectors pointed
by CS and DS registers respectively) in 32-bit processor
mode are all set with address range of 0~4GB. In AXIS,
the loader extension re-configures the CS and DS segments,
making data segment smaller than code segment. At the
same time, the code segment is marked execute-only. The
memory ranges that belong to the code segment while stay
out of the data segment are now execute-only (dark black
area in Figure 7) 2.

Within the execute-no-read memory segment, the pro-
gram code can access the data or be executed, but the
code itself cannot be read. All the above mentioned can
be done by the AXIS loader extension to prepare and load
the customized segment descriptors in the local descriptor
table (LDT). The loader extension also configures the code
segment to mark it execute-only (this can be configured in
the type filed of the code segment descriptor [18]). After
that, any attempts to read the execute-only memory would
cause a segmentation fault and can be easily captured by
AXIS.

2. Note that we cannot simply mark CS as execute-only without shrinking
DS, because the process by default will use DS to make a data read.



2017 IEEE Symposium on Computers and Communications (ISCC)

3.5. Prototype of AXIS

We have built a prototype of AXIS based on the open-
source, modular LLVM compiler infrastructure. Many pro-
gramming languages, such as C/C++, D, Go, and FOR-
TRAN, have a LLVM front-end that generate LLVM IR
(intermediate representation). LLVM IR is a flexible form
for code analysis and transformation. We use Clang, a
C language family front-end for LLVM, as our front-end.
Function pointer indirection is implemented in both the
front-end and the back-end: the front-end analyze the code
to collect function pointer targets, such as internal func-
tions that have their addresses taken and external functions,
while the back-end performs the actual transformation (in
AsmPrinter). Return address indirection is implemented
solely in the back-end, also in AsmPrinter. We assign
each proxy to the .ind_tbl.text section. This instructs
the compiler to put all the proxies in the same section to
facilitate its relocation. Meanwhile, we implement static data
relocation and execute-only memory in a shared library pre-
loaded into the process’ address space with LD_PRELQAD.
A pre-loaded library executes before the main function.
It thus can safely relocate the static data and prepare the
segmentation. The library unloads itself afterward to prevent
itself from being targeted by code reuse attacks.

4. Evaluation

In this section, we first analyze the security improve-
ments to ASLR made by AXIS, and then evaluate its
performance with standard benchmarks.

Security Evaluation: AXIS prevents the code pointer
leak by redirecting the code pointers to the execute-only
memory. In particular, code pointer targets, such as function
entry points and return sites, are substituted by proxies. Thus
the attackers can no longer read the real code locations from
the pointers. Proxies and the static data will be relocated
to the random memory locations by AXIS loader extension.
Therefore, an attacker cannot use the fixed offset from static
data and the code to deduce the code locations.

We empirically measure the effectiveness of code pointer
indirection with the tool mentioned in Section 2. Specifi-
cally, we obtain the memory of a AXIS-protected program
and count how many code pointers point to the code section
(unprotected) and how many point to the proxies (protected).
We found that the vast majority of code pointers have
been protected. Nevertheless, there are a small number of
leftovers. For example, we protected 755 code pointers out
of all the 762 ones for the Apache web server. The other 7
code pointers are in fact all introduced by the compiler under
the hood: 1) the PC-relative addressing mode in Figure 6
temporarily saves the current program counter to the stack.
2) the compiler inserts a number of functions to bootstrap
the process (e.g., __libc_start_main). These functions
are linked to every program as binaries, and thus are not
converted by AXIS. To address that, we could provide
our own instrumented bootstrapping functions, and ask the
compiler to link to them instead of the built-in ones. A

9%
L :

T |vmmmmr e e e -

6% [ -

5% [

4% o

3% T At
2% - |- At B !
T B Bl A
0% b B, . U, % 69’_6‘, G, 2

25 @ %, Oy 2 %,

G G, K
« /// ’Qf q,ﬁ . 7%, %, O)O'
% %

Performance Overhead

Figure 8: Performance Overhead of SPEC CPU2006

quick-and-dirty solution is to overwrite these functions upon
the entry to the main function since they are no longer
needed afterwards.

Performance Evaluation: We evaluate the performance
of our prototype with standard SPEC CPU2006 benchmark.
SPEC CPU2006 is a set of CPU-intensive applications to
measure the system performance. AXIS’ impacts to the per-
formance are twofold: first, AXIS introduces an additional
layer of indirection for code pointers, slowing down the
programs. Second, AXIS changes the program’s memory
layout. Specifically, it aggregates proxies in a dedicated
section and moves static data sections to random locations.
Memory layout can affect the program’s caching behav-
iors and the performance. Figure 8 shows the performance
overhead of SPEC CPU2006 caused by AXIS. Sjeng has
the largest overhead at 6.9%, while hmmer has the lowest
overhead at 0.3%. On average, AXIS incurs about 3.3%
performance loss for SPEC CPU2006. Overall, we consider
the performance of AXIS is more than acceptable for most
applications and the protection provided by AXIS is well
worth this small performance loss.

5. Related Work

In this section, we summarize the recent researches to
prevent the memory exposure attacks. Code randomization
has been adopted by commodity operating systems in the
form of coarse-grained address space layout randomization
(ASLR), where program binaries are loaded at random
bases [6], [7], [8]. However, ASLR has limited randomness
on the 32-bit architectures [19], as well as vulnerable to
information exposure attacks. To address that, fine-grained
code randomization systems have been proposed to mingle
the code at the page, function, or basic block level [3],
[4], [5]. For example, Oxymoron proposes a new calling
convention in which code pages are position and layout
agnostic [4]. This allows Oxymoron to finely randomize
code pages without losing the memory saving of shared
libraries and executables. However, a single code-pointer
based address exposure could circumvent this fine-grained
protection by JIT-ROP [13], in which a single leaked pointer



2017 IEEE Symposium on Computers and Communications (ISCC)

can be used to recursively read out the whole process
memory.

To address that, researchers proposed to implement
execute-only memory pages in both software [11], [20],
[21] and hardware [12], [18], [22]. For example, XnR
controls the page table of the protected process so that
only the currently active code pages are readable [11].
Readactor realizes the execute-only page with the help of
the hypervisor’s second-level address translation (a.k.a. Intel
EPT) [12]. It further protects the code pointers from leaking
the memory layout. However, besides the bloated hypervisor
software, Readactor cannot prevent the data pointers from
leaking out the memory layout. As demonstrated in Figure 1,
there are plenty of data pointers in these processes. Static
data always have fixed offsets to the program code, which
could also leak out the process layout. AXIS solves both
code and data pointers leakage problems by using a pointer
indirection table as well as a static data relocation library.
In addition, AXIS can more securely support dynamically
linked programs, which will disclose the locations of un-
redacted libraries.

6. Summary

We have presented the design, implementation, and eval-
uation of AXIS, a practical system to improve ASLR’s de-
fense against address exposure attacks. ASLR is one of our
most important defense against attacks that has been widely
adopted by commodity operating systems. AXIS can prevent
both direct address exposure via code pointers and indirect
address exposure via data pointers. It has two key tech-
niques, code pointer indirection and static data relocation.
Code pointer indirection introduces a layer of indirection in
order to stow real instruction addresses in the execution-
only memory, while static data relocation randomize the
offsets between the code and the data so that data pointers
cannot be used to calculate the code location. Our evaluation
demonstrates that AXIS can eliminate (most of) both code
and data pointers and significantly raise the bar for working
exploits. The performance evaluation with standard bench-
marks and applications shows that our prototype incurs very
minor performance overhead.

Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments. This work was partly sup-
ported by the National Science Foundation of China
(No. 61672421, 61402358, 61602363), the Ph.D. Pro-
grams Foundation of Ministry of Education of China (No.
20120201110010) and the China Postdoctoral Science Foun-
dation (No. 2016M590927).

References

[1] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
SoK: Automated Software Diversity. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, SP 14, 2014.

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

PaX Team. PaX Address Space Layout Randomization (ASLR), 2003.

Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and
Peng Ning. Address Space Layout Permutation (ASLP): Towards
Fine-grained Randomization of Commodity Software. In Computer
Security Applications Conference, 2006. ACSAC’06. 22nd Annual,
pages 339-348. IEEE, 2006.

Michael Backes and Stefan Niirnberger. Oxymoron: Making Fine-
grained Memory Randomization Practical by Allowing Code Sharing.
Proc. 23rd Usenix Security Sym, pages 433-447, 2014.

Yue Chen, Zhi Wang, David Whalley, and Long Lu. Remix: On-
demand live randomization. In Proceedings of the Sixth ACM Con-
ference on Data and Application Security and Privacy, pages 50-61.
ACM, 2016.

Apple. OS X MountainLion Core Technologies Overviewe.
http://movies.apple.com/media/us/osx/2012/docs/OSX_
MountainLion_Core_Technologies_Overview.pdf.

Linux Kernel Address Space Layout Randomization. http://lwn.net/
Articles/569635/.

Alex Tonescu Mark Russinovich, David Solomon. Windows Internals,
6th Edition. Microsoft Press, 2012.

CWE. CWE-200: Information Exposure. http://cwe.mitre.org/data/
definitions/200.html.

Nmap. Remote OS Detection. http://nmap.org/book/osdetect.html.

Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe,
Stefan Niirnberger, and Jannik Pewny. You Can Run but You
Can’T Read: Preventing Disclosure Exploits in Executable Code. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, 2014.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi,
Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael
Franz. Readactor: Practical Code Randomization Resilient to Memory
Disclosure. In 36th IEEE Symposium on Security and Privacy
(Oakland), May 2015.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time Code
Reuse: On the Effectiveness of Fine-grained Address Space Layout
Randomization. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 574-588. IEEE, 2013.

Wikipedia. Ptrace. http://en.wikipedia.org/wiki/Ptrace.

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John
Criswell, and Vikram Adve. Nested kernel: An operating system
architecture for intra-kernel privilege separation. In Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 191-206.
ACM, 2015.

Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin Zhou.
SecPod: A Framework for Virtualization-based Security Systems. In
2015 USENIX Annual Technical Conference (USENIX ATC 15), pages
347-360, 2015.

John R. Levine. Linkers and Loaders.
Francisco, CA, 1999.

Intel. Intel 64 and IA-32 Architectures Software Developers Manual,
Feb 2014.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the Effectiveness of Address-space
Randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, CCS ’04, pages 298-307,
2004.

Jason Gionta, William Enck, and Peng Ning. HideM: Protecting the
Contents of Userspace Memory in the Face of Disclosure Vulnera-
bilities. 2015.

Scott Brookes, Robert Denz, Martin Osterloh, and Stephen Taylor.
Exoshim: Preventing memory disclosure using execute-only kernel

code. In Proceedings of the 11th International Conference on Cyber
Warfare and Security, pages 56—66, 2016.

ARM: the Architecture for the Digital World. http://www.arm.com/.

Morgan Kaufmann, San



