
sMVX: Multi-Variant Execution on Selected Code Paths
SengMing Yeoh
sengming@vt.edu

Virginia Tech

Xiaoguang Wang
xgwang9@uic.edu

University of Illinois Chicago

Jae-Won Jang
jjang3@vt.edu

Virginia Tech

Binoy Ravindran
binoy@vt.edu

Virginia Tech

Abstract
Multi-Variant Execution (MVX) is an effective way to detect mem-
ory corruption vulnerabilities, intrusions, or live software updates.
A traditional MVX system concurrently runs multiple copies of
functionally identical, layout-different program variants. Therefore,
a typical memory corruption attack that forges pointers can suc-
ceed on at most one variant, leading the other variant(s) to crash.
The replicated execution adds software security and reliability but
also brings multiple times of CPU and memory usage.

This paper presents sMVX, a flexible multi-variant execution
system replicating variants only on the selected code paths. sMVX al-
lows end-users to annotate a target program and indicate sensitive
code regions for multi-variant execution. Such code regions can
be authentication-related code or sensitive functions that handle
potentially malicious input data. An sMVX runtime only replicates
the sensitive functions and executes them in lockstep. We have
implemented a prototype of sMVX using an in-process code mon-
itor. The sMVX monitor supports the selected code paths MVX
from within the target program’s address space, but the monitor is
isolated from the target’s code by the Intel Memory Protection Keys
(MPK). We evaluated the sMVX using a benchmark suite and two
server applications. The evaluation demonstrates that sMVX ex-
hibits a comparable performance overhead to state-of-the-art MVX
systems but requires 20% fewer CPU cycles and 49% less memory
consumption on server applications.

CCS Concepts: • Security and privacy→ Software and appli-
cation security; Systems security.

Keywords: Multi-Variant Execution, Memory Protection, Software
Security
ACM Reference Format:
SengMing Yeoh, XiaoguangWang, Jae-Won Jang, and Binoy Ravindran. 2024.
sMVX: Multi-Variant Execution on Selected Code Paths. In 25th International
Middleware Conference (Middleware ’24), December 2–6, 2024, Hong Kong,
Hong Kong. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3652892.3654794

1 Introduction
The N-Version system, or the Multi-Variant Execution (MVX), is
a method to improve software security and reliability by running
functionally equivalent program variants concurrently [7, 9]. An
MVX monitor dispatches the input data to all program variants
at runtime and periodically checks the execution results. MVX

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 25th International
Middleware Conference (Middleware ’24), December 2–6, 2024, Hong Kong, Hong Kong,
https://doi.org/10.1145/3652892.3654794.

has been used in many scenarios, such as seamless software up-
dates [16, 37, 57] and intrusion detection [39, 47, 53]. These ap-
proaches leverage the replicated program variant to replace an old
software instance or detect an attack. The additional replication
and redundancy bring reliability to the software deployment.

Recently, security researchers proposed to use MVX to detect
memory corruption attacks [25, 39, 40, 47, 51, 53, 59]. These MVX
systems generate program variants of the same functionality but
are different in-memory layouts. For example, existing approaches
used non-overlapping address spaces [25, 39, 59], reversed stack
order [40], or even heterogeneous instruction set architectures
(ISAs) [50, 51, 53] to generate program variants. It relies on the
fact that an exploit can only target one particular program variant
(e.g., an address space layout or a particular architecture), while
the same exploit payload will cause other variants to crash or have
inconsistent execution results [25, 39, 47].

Although existing research efforts have shown MVX is effective
in detecting bugs in server applications [9, 25, 39, 46, 47], oper-
ating system kernels [6, 59] and even micro-architecture behav-
iors [50, 51, 53], there are a few key issues in existing MVX design.
First, the MVX systems require several program instances running
concurrently, whichwastes CPU cycles and increases memory usage.
Second, the whole program replication makes variant synchroniza-
tion complicated. In particular, the MVX monitor often simulates
system calls (or library calls) for the replicated variants to avoid
re-executing I/O requests. A larger execution trace requires more
system calls to be emulated. Furthermore, handling process/thread
creation in initialization code is challenging for MVX variant syn-
chronization [48]. Replication of such code regions does not bring
significant security benefits.

In this paper, we propose sMVX, a new mechanism of MVX sys-
tems that replicates the variant execution only on selected code paths.
Thus, it reduces the number of unnecessary instructions executed
due to the replications of the whole program execution. We further
applied the sMVX mechanism to selectively replicate and protect
sensitive code, such as authentication-related code or functions
that interact with the (potentially) malicious external input data,
to improve software security. Although sMVX requires end-users
to annotate sensitive code regions, we also developed a tool to
identify sensitive code paths semi-automatically. The tool was built
on a dynamic taint analysis framework – libdft [23] and would
generate a list of sensitive functions. Application programmers can
annotate the code regions for multi-variant execution using their
knowledge of the program logic or leveraging the dynamic analysis
results. At runtime, the sMVXmonitor will create program variants
containing only sensitive functions.

To showcase this idea, we implemented sMVXwith an in-process
code monitor. The code monitor runs within the same address space
of the target process but is isolated by the Intel memory protection

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

key (MPK) [28]. We demonstrate the usability of sMVX by running
two server applications and a benchmark suite under sMVX. The
evaluation shows that sMVX performs similarly to a state-of-the-art
high-performance MVX monitor – ReMon [49]. However, sMVX
allows fewer code paths to be replicated.

Overall, we make the following contributions:

• We identified the code and memory replication issue in tra-
ditional MVX systems and proposed a new MVXmechanism
that only replicates a set of user-defined sensitive function
paths to reduce the CPU and memory usage.

• We present the design of sMVX for sensitive code path iden-
tification, instrumentation, and variant generation. We also
describe the sMVX implementation with an in-process code
monitor protected by the Intel MPK; sMVX is open-sourced:
https://github.com/ssrg-vt/sMVX.

• We report the evaluation results of sMVX, discuss the lessons
learned and outline potential future improvements in this
direction.

2 Background and Threat Model
2.1 Background

Multi-Variant Execution. The core concept behind the multi-
variant execution is to secure programs by replication. In particular,
by having multiple diversified program variants, MVX systems en-
sure attack payloads will only work against a subset of the variants,
and any divergence in the flow of execution between variants will
be picked up by a monitoring agent. The diversification can be in
the form of stack growth direction [40], non-overlapping memory
layout [9, 25, 39, 47, 59], different compiler options [32], or even dis-
tinct processor architectures [51, 53]. The MVX monitor typically
uses the lock-step check (on system calls or libc calls) to periodically
verify that all variants are still in the same (correct) state.

Besides detecting the execution divergence, the MVX monitor
also ensures all variants execute under the same input. This is im-
portant for running multiple program variants on a single machine,
as all variants have to interact with the same operating system (OS)
I/O buffer [9, 25, 51, 53]. Allowing all variants to access the same
I/O buffer will lead to unpredictable execution results and even
program crashes. To solve this issue, most MVX systems only allow
a leader variant to access the system I/O buffer and simulate the
I/O operations for follower variants when the OS kernel gives back
control to the application code. For example, an MVX monitor can
emulate a file read by copying the corresponding file content to the
follower variant’s memory buffer and returning the data size to the
application code [9, 25, 39, 47, 51, 53, 59]. After that, the follower
variant continues to execute as if it has accessed the file.

The I/O emulation mentioned above requires the MVX monitor
to intercept these I/O operations while still keeping the monitor
isolated from the target process. Without isolation, a (potentially)
malicious programmay bypass the MVXmonitor’s I/O interception
and emulation, thus hiding the malicious behavior. Based on the
monitor’s isolation technique, there are generally two kinds of
MVX monitors – the cross-process monitors and the in-process
monitors [8, 49]. The former one typically uses a ptrace process to
host the monitor code for better isolation while keeping the target
process in the ptrace child process [39, 51]. The monitor and the
target have strong inter-process isolation, but the monitor also

suffers from higher performance overhead as each I/O interception
requires four context switches1.

Other approaches place the MVX monitor inside the target pro-
cess but within a higher privilege domain [9, 25, 53, 59], such as
hosting the monitor inside an operating system kernel [9, 53, 59]
or a hypervisor [25]. Although these approaches achieved strong
monitor execution protection, replicating multiple program vari-
ants utilizing numerous OSes or machines significantly increases
the computing resources. This paper explores an alternative per-
spective on enhancing the MVX system, seeking to address the
question: Can we minimize resource consumption in MVX systems
while upholding a comparable level of security guarantee?

Intra-Process Monitor Isolation and Memory Protection
Keys. Another critical issue for MVX systems is the MVX moni-
tor’s placement. As we mentioned earlier, the MVX monitor needs
to access (hook) the target application’s system calls or library
calls, but the monitor must also be isolated from the target’s code.
Intra-process isolation is an approach to compartmentalize soft-
ware components within the same address space. There are a few
recent research efforts aimed to create compartments for intra-
process isolation [26, 29, 30, 54, 58]. For example, light-weight con-
text (lwC) modifies the OS kernel to provide independent isolation
units within a process [29]. Following this direction, recent work
leverage Intel MPK to achieve sensitive data isolation with cheaper
performance costs [15, 36, 45].

Memory Protection Keys for Userspace (PKU) was introduced as
an extension of the memory management architecture in Intel Xeon
Scalable family (a.k.a., Skylake-SP) [10]. It provides a mechanism
to enforce page-granularity protection without modifying the page
tables, even when an application updates the protection permission
(PKEY). Therefore, it does not require TLB shoot downs and subse-
quent TLB misses. With MPK, bits 62:59 of each page table entry
can be associated with one of the 16 available keys (PKEY). A new
32-bit thread-private protection key rights register for user pages
(PKRU) was introduced to store the permissions of the 16 keys. For
each key, there are two bits in the PKRU indicating the permissions
for the thread currently running on that core: write disabled and
access disabled. To set/change permissions of a memory domain, an
unprivileged instruction wrpkru can be used to update the PKRU
register. The memory permissions can be updated instantly. The
protection key only works for data memory accesses. Interestingly,
if the code pages are associated with an access disabled protection
key, the code will be executable only (a.k.a., the execute-only mem-
ory (XoM) [1]). sMVX hides the MVX monitor with code location
randomization and leverages XoM to prevent trampoline code from
leaking out the monitor location.

2.2 Assumptions and Threat Model
We assume the application source code is available to sMVX users
to instrument the selective protection regions and analyze pointer
alias. We assume the attacker has access to the target binaries, such
as the application code, its shared libraries, and the monitor. At
runtime, the attacker can only access the target process remotely
through the standard I/O interface, namely a socket connection.
The attacker can send arbitrary data to the target process. Similar
to most existing MVX systems [25, 39, 46], sMVX does not bring

1Intercepting a system call executed in the target process requires two user/kernel
context switches for the target process and two context switches for the monitor [49].

sMVX: Multi-Variant Execution on Selected Code Paths Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong

any exploit mitigations but relies on the diversified variants exe-
cution to detect the potential exploit. We assume a strong trusted
computing base (TCB), including the OS kernel and the compiler
toolchain. Side-channel attacks and kernel vulnerability exploits
and mitigations are out of the scope of this paper.

3 Design and Implementation
3.1 Overview
sMVX aims to reduce the resource usage of the MVX system by
only replicating the sensitive code paths. In our current design, the
user is required to instrument the code region that contains the sen-
sitive functions (i.e., the sMVX protected region). An sMVX runtime
monitor loads the target program binary and generates a variant of
the target program only using the sensitive functions (Figure 1 (c)).
The replicated variant and the main variant do not share any over-
lapping addresses in their address spaces (Section 3.2). Therefore,
an exploit targeting one of the variants will likely be captured by
the other because of the potential memory address errors. Figure
1 further illustrates a comparison of application execution under
sMVX (Figure 1 (c)) with traditional MVX systems (Figure 1 (b))
and the standard application execution (Figure 1 (a)).

sMVX
Monitor

(b) Application w/ Tradition MVX

MVX Monitor

(c) Application w/ sMVX
(a) Vanilla

Application Execution

mvx_end()

mvx_start()

Figure 1. An example of selective replicated execution only for
potentially malicious input handling.

Within the protected region, the sMVX monitor performs libc
call synchronization and checking through a secure IPC channel
(Section 3.3). By doing this, we reduce the context-switches over-
head in a traditional ptrace-based MVX monitor [39, 51]. The
sMVX monitor is placed inside the target address space, but the
monitor’s memory pages are isolated from the target program by
the Intel MPK (Section 3.4). Keeping the monitor within the process
makes the sMVX lightweight. Note that sMVX can also protect
arbitrary regions of code and is not solely restricted to protecting
security-sensitive areas. Extending the protection region to the
entire program execution lifetime (e.g., protecting the main() func-
tion) will be similar to the traditional whole-process MVX systems.

3.2 sMVX Protected Region Instrumentation
To set up sMVX, end-users have to annotate code regions that con-
tain the sensitive functions. sMVX provides a library API of auxil-
iary functions (e.g., mvx_*() in Listing 1) that define the protected
region and cooperate with the sMVX runtime for variant creation
and termination. The protected code region can be well-known
attack surfaces, such as the worker thread in a server application
or functions interacting with external I/O data.

As shown in Listing 1, applications are required to call the
mvx_init() function first. The mvx_init() sets up the protected
memory regions and load the sMVX monitor. It also initializes the

protection keys (PKEYs) and associates the PKEYs with the corre-
sponding memory pages. The mvx_start() and mvx_end() are a
pair of functions that defines the protected region. The mvx_start()
function triggers the process’s cloning, updating shared values, and
creating the shared memory IPC for library calls simulation. It fur-
ther makes the follower variant jump to the desired address. The
mvx_start() takes the protected function name, the number of
arguments, and the argument variables of the protected function
as its arguments (Line 4 in Listing 1). The mvx_start() resolves
the sensitive function address from the provided function name
argument, prepares the thread context for the follower variant, and
redirects the control flow to start the follower variant execution.

1 int main(void) {
2 mvx_init ();
3 /* Unprotected area */
4 mvx_start("protected_func", 2, arg1 , arg2);
5 protected_func(arg1 , arg2);
6 mvx_end ();
7 /* Unprotected area */
8 return 0;
9 }

Listing 1. Example of a function protected by sMVX

The mvx_end() function is called at the end of the protected
code regions. The major role of mvx_end() is to merge the variants
execution into a single program execution context. Specifically, it
synchronizes the lock-step checks and waits for checks to complete
before allowing the leader variant to continue. Additionally, it may
trigger an alarm if the execution outcomes of the variants diverge,
signaling a potential attack. To accomplish this, the mvx_end()
function utilizes the wait() system call, effectively pausing to
allow the follower variant’s thread to finish its execution.

It’s worth emphasizing that there’s no necessity to synchronize
memory back from the variant to the original function upon the
variant’s termination, as the variant exclusively serves the purpose
of detecting inconsistent execution behaviors. Furthermore, it’s
important to highlight that the mvx_start() and mvx_end() sMVX
function pair can be invoked multiple times within a program,
accommodating the protection of numerous code regions. However,
more protected regions may introduce additional overhead. In our
practice, we opted for a root function encapsulating all sensitive
functions as the protected region, utilizing sMVX to safeguard the
root function (e.g., func2() in Figure 2).

The instrumented application will be linked against a customized
library containing the mvx_*() function stubs, while the actual im-
plementation of these functions resides within the sMVX monitor
(refer to Section 3.4). During runtime, calls to mvx_*() functions
are redirected to the sMVX monitor, ensuring that the target ap-
plication cannot directly access the monitor code. To facilitate this
process, we provide a script that analyzes the binary and extracts
ELF section, symbol, and function information. It’s worth to note
that this implementation choice can be entirely handled within the
sMVX library.

Running applications with sMVX: Before running the appli-
cationwith sMVX, the end-user will need to run the aforementioned
script to create a profile file (in a /tmp filesystem). It contains infor-
mation about the start offsets and size of the .text, .data, .bss,
.plt, and .gotplt sections of the application. We also save the
symbol table information to the profile file so the sMVX monitor
can resolve the user-specified protection function name (i.e., the

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

LD_PRELOAD constructor
setup_mvx()

main()

func1() func2() func3()

subfunc1() subfunc2()

subsubfunc2()

sMVX protected

variant 1

variant 2

unprotected

… …

Figure 2. Callgraph of a program protected by sMVX

first parameter of mvx_start()) to a function address. This map-
ping will then be used to ascertain the offset of a selected symbol
and instruct the follower variant to begin execution from that point.

When an application needs to be run under sMVX, the end-user
loads the sMVX monitor with the LD_PRELOAD linker environment
variable (i.e., LD_PRELOAD=./smvx_monitor.so ./<app bin>).
The dynamic loader first runs its constructor function setup_mvx()
to perform the sMVX setup. Specifically, it stores the original libc
symbol addresses so we can use them internally within the library
without intercepting ourselves. It also initializes the loader subsys-
tem within the library which loads the follower variant into mem-
ory. The setup_mvx() also reads the binary information from the
previously created /tmp filesystem file and retrieves the dynamic
process information from /proc/self/maps. The constructor also
patches the loaded PLT entries of the running process with the
MPK trampoline (Section 3.4). The last thing for the constructor is
to set up the shared-memory IPC, including the mutexes, condition
variables, and libc call emulation-related data.

Figure 2 shows the call graph of an example program protected
by sMVX. By placing the mvx_start() and mvx_end() calls around
the call site of the func2(), its entire call graph subtree is replicated
by sMVX. The main(), func1() and func3() (and by extension
its own subnodes) do not have their execution duplicated with a
follower variant, only func2() and its child nodes run in lock-step
with a follower variant. In the rest of this section, we will describe
a dynamic analysis method to identify a list of potential sensitive
functions (e.g., func2() in the example).

Finding an approximate list of sensitive functions with
dynamic program analysis: To help the end-user find a mini-
mal yet necessary protected region, we leverage existing dynamic
program analysis tools to locate the potential sensitive functions.
As mentioned earlier, security sensitive code can be functions that
handle external input data or functions that authenticate users’
identities. For each case, we provide a semi-automatic method to
locate these sensitive functions.

We leverage the dynamic taint analysis to identify functions that
handle external inputs. The idea behind it is to track any memory
byte tainted by the external input (e.g., through network sockets)
and filter out the code that interacts with the “tainted memory”.

Such tainted memory can be memory buffers that directly store the
network input (tainted source) or anymemory bytes that the tainted
memory flows over (through memory copy, etc.) [42]. We assume
the external attacker will likely trigger the exploit remotely by
sending payload data to the target process. We leverage libdft [23]
to locate functions handing external network inputs. libdft is
a framework to track data flow between the main memory and
registers at byte-granularity and provides an API to customize what
code and data to instrument [23]. In our extension, we marked the
network input as the taint source. As such, network-relatedmemory
will be tagged during the program execution and tracked as it is
copied and altered by instructions in our target programs. The
output of our tool is a list of instruction addresses that accessed the
tainted memory (originally from the network input). This denotes
the code pieces that the remote attacker can externally control.

Next, we wrote a script to get the functions in which those in-
structions reside. We used the r2pipe [38] in our script to find the
functions containing the “tainted instructions” and dump out the
symbol names of the function candidates to be protected by sMVX.
All steps mentioned above are illustrated in Figure 3. For the Nginx
web server, here are some of such functions which handle tainted
network data: ngx_http_handler(), ngx_http_header_filter(),
and ngx_http_process_request_line(). Thesewill be candidates
to be protected with sMVX.

pin -follow_execv -t \
libdft/tools/taint_tacking.so -s 0 -f 0 -n 1 -- \
<Application Bin> <params> ...

void main() {
 /* Parse dft.out and filter by .text addresses */
 parse_libdft_output();

 /* Parse target binary using r2pipe
 and get nearest func symbols*/
 parse_target_binary();

 /* Output function symbols to file as candidates */
 dump_function_names();
}

dft_result_parser:
dft.out

Run libdft on target application

Figure 3. Taint analysis workflow

The authentication-related code discovery is a little different
from locating tainted data handling code. We leverage the code cov-
erage information collected from a successful user authentication
input and a failed authentication input to locate any authentication-
related functions. Specifically, we collected two execution trace
logs and used the diff of two log files as the hint for finding the au-
thentication code. Although multiple basic blocks can be executed
differently in the success and failed execution logs, we found that
the first divergent basic block is likely to be authentication-related,
and functions containing these basic blocks are likely used for au-
thentication. Through these dynamic program analysis methods,
we successfully identify the sensitive code.

sMVX: Multi-Variant Execution on Selected Code Paths Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong

Emulation requirement Libc function names

Libc calls only requiring
return value emulation

open, close, shutdown,
write, writev,
epoll_ctl, setsockopt

Libc calls requiring
return value and
argument buffer emulation

sendfile, stat, read,
fstat, gettimeofday,
accept4, recv,
getsockopt, localtime_r

Libc calls requiring
special emulation

ioctl, epoll_wait,
epoll_pwait

Table 1. Libc calls emulation with different requirements

3.3 Libc-calls Synchronization and Checkpoint
After the protected region is defined and replicated, sMVX also
needs to synchronize the variants’ execution, especially system
calls (or library calls) that interact with the stateful data. For exam-
ple, we cannot allow a write() system call to be executed by both
variants as it will write duplicated data to the same file. The sMVX
monitor prevents this duplication by synchronizing data between
variants at the libc call boundary. Similarly, the sMVXmonitor also
needs to synchronize the read()/send()/recv() calls and their
variants that perform I/O operations. This is because sharing the
same filesystem results in a situation where one variant may read
and clear a buffer or handle and clear an event (i.e., in the case of
epoll_wait()), resulting in the other variant arriving at that libc
call no longer seeing that data and subsequently causing an execu-
tion divergence. There are other cases that will cause false positives
if not properly handled. As mentioned in the Orchestra paper [39],
such libc calls include time-related calls (i.e., localtime_r() and
gettimeofday()), and data read from /dev/urandom and equiva-
lents. sMVX similarly emulates these libc calls.

Besides synchronizing I/O data, the sMVX monitor also checks
several parameters for consistency across variants, such as function
names that are being called, return values from each libc call, and
non-pointer argument values. This ensures the sMVX monitor
detects any divergent execution immediately when variants go into
different execution paths. Table 1 shows a summary of libc calls
with these emulation requirements we supported to run sMVX on
the applications showcased in the evaluation (Section 4). All three
categories of libc calls needing emulation on the follower variant
also require errno emulation to correctly give the follower variant
accurate information regarding the error status of the libc call.

The first category of libc calls requiring emulation only for func-
tion return values on top of errno. These libc functions do not write
to any application buffers passed in through arguments. The second
category of libc calls write data to the memory buffer pointed by the
corresponding arguments. Therefore, the data can be passed back
to the application. When the two variants both call such libc calls,
there will be logical memory write issues. To solve that, sMVX
adopts a common solution from the past work [9, 25]. Specifically,
sMVX only allows the leader variant to execute the libc call. Then,
the leader copies over this returning data to the follower variant
through the IPC, allowing the follower to skip execution of that
libc call but with the returning data passed back to the application.

Finally, there are a few libc calls which require special handling.
For example, ioctl() has variable arguments depending on what

request and device driver it is sending commands to. This results in
sMVX being unable to detect if any of these arguments are pointer
arguments and if emulation is required. In our approach, we no-
ticed that the only call made to ioctl() by our test applications
was made in the form where the third argument was a pointer that
needed to be emulated and thus only handled that case. One way
to handle this in a more robust and generalizable manner would be
only to simulate the input argument if it is a pointer that falls within
the process’s address space. epoll_wait() and epoll_pwait()
are slightly different because whether or not they need to be emu-
lated depends on the mode of epoll_data being used. epoll_data
is a union that can be a file descriptor, 32-bit value, 64-bit value, or a
void pointer to data defined by the application. The difficulty arises
when the union represents a pointer value as this will need to be
emulated on the follower variant. We solved this by checking if the
value falls within the process’ address space, as with ioctl().

3.4 sMVXmonitor
We designed and implemented an sMVX monitor to support above
mentioned libc-calls synchronization. The sMVX monitor is imple-
mented as a shared library that resides within the target process
space. This requires the monitor code and data to be safely iso-
lated from the target program’s code. To this aim, we leverage
the Intel MPK hardware feature to ensure the monitor code from
being accessed safely (Figure 4). However, a protection key can
only be configured to prevent data fetching and cannot prevent
code from being executed. Since the monitor code should be iso-
lated from the target program, we adopt a similar approach to
MonGuard [54] and use code randomization for hiding the sMVX
monitor code. MonGuard is an open-source in-process monitor
that leverages the Intel MPK for the monitor isolation. The key idea
behind MonGuard is to dynamically update the accessibility of
the application memory pages and the monitor memory when con-
trol flows transfer between them. InMonGuard, the control flow
transfers through a call gate (i.e., a trampoline code).MonGuard
uses the execute-only attribute of the memory protection key to
prevent the monitor code from being probed [54]. The code mon-
itors are implemented as shared libraries in MonGuard and are
loaded at random locations (using LD_PRELOAD). As such, monitor
calls that go through the procedure linkage table (PLT) are under
the monitor’s interception.

sMVX further extendsMonGuard by adding themulti-threading
support and the stack pivoting. As shown in Figure 4, sMVX switches
the stack on entering/leaving the trampoline code; thus, it pre-
vents malicious application code from compromising the moni-
tor’s stack [13]. Stack pivoting enables an intercepted libc call to
have more than six arguments. The x86_64 function call conven-
tion [19] dictates that integer arguments 1-6 of a function call
are passed through registers %rdi, %rsi, %rdx, %rcx, %r8 and %r9.
Any additional arguments are pushed onto the stack. Further, for
functions with variadic arguments, the argument number is also
stored in %rax and call-time. These rules pose a problem for exist-
ing MonGuard trampoline code as the libc or monitor calls do not
consider the complicated code interception (the gray parts in Fig-
ure 4 are fromMonGuard, and the colored parts are introduced by
sMVX.). With sMVX, whenever the application issues a libc call, it
calls the corresponding PLT entry. The sMVX monitor patches the
PLT entries so that every libc call will go through the trampoline
code. The PLT and trampoline code are marked as execute-only.

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

application_func() {

monitor_call@plt()

}
monitor_call PLT slot

PLT Resolver Slot

.

.

.

Patched PLT

Application Code

call

jmp

Trampoline

DEACTIVATE_MPK_PROT()

arg7

arg9

arg8

arg10

trampoline

ret

Switch

Stacks

Unsafe Stack Safe Stack

mov gotplt_address@GOTPCREL(%rip), %rbx

mov (%rbx,%rax,8),%rbx

pop %rax

callq *%rbx

Index into .got.plt and call:

jmp

monitor_call() {

/* Monitor logic */

actual_libc_call();

return;

}

Reference Monitor

ACTIVATE_MPK_PROT()

application

%rbx

Switch

Stacks

ret

ret

Intel MPK

Protected

arg7

arg9

arg8

arg10

application_func

ret pc

application %rbx

arg7

arg9

arg8

arg10

Safe Stack Unsafe Stack

arg7

arg9

arg8

arg10

application_func

ret pc

application %rbx

Figure 4. Execution flow of a monitor call (or a library call interception) through the sMVX monitor.

Therefore, an attacker cannot read the PLT code directly to locate
the trampoline and the monitor [54]. The sMVXmonitor also marks
itself and the trampoline data as non-accessible in the application
context. On entering the trampoline code, sMVX first enables the
data access, switches the call stack, and uses the index of the PLT
call to find the actual libc function.

As seen in Figure 4, a newly added callq *%rbx instruction
redirects the control to the reference monitor resulting in the return
address of the trampoline being pushed onto the stack. This also
causes any %rsp relative addressing within the function code to
no longer be semantically correct. Replacing the callq instruction
with a jmpq instruction is not an option as we need the reference
monitor function to return to the trampoline so it can reactivate
MPK protections and swap back to the unsafe stack. Critically, %rbx
also needs to be saved by the callee (i.e., the trampoline), limiting the
number of registers we are free to use in theMonGuard trampoline
to perform the stack pivot and MPK PKRU bit set/reset. To resolve
this issue, we rebuild the secure stack in an MPK secured location,
replacing the return address to the caller in the application with a
return pointer to the trampoline, thereby making the interception
completely transparent to the referencemonitor and the subsequent
libc call. %rbx is also saved onto the unsafe stack and will be popped
upon returning to the trampoline. The %rax value on entering the
trampoline is restored and passed into the call to the reference
monitor so variadic function calls into the reference monitor remain
unbroken (Figure 4). In summary, our extension allows variadic libc
calls and libc calls with more than six parameters to be intercepted
and emulated.

In order to support multi-threaded applications, the sMVX tram-
poline’s stack memory area and unsafe stack pointer are created
as thread local storage (TLS) variables within the sMVX library’s
address space. This allows each newly-created thread to have its
own sMVX trampoline stack when entering the monitor. It’s worth

noting that the TLS variables utilized by applications are also du-
plicated during variant creation. Another benefit of using the safe
stack is to prevent the untrusted application code from attacking
the monitor stack. This is used by several existing attacks where
attackers reuse the call stack history and the data left on the stack
to generate the exploit [13, 18].

Follower variant creation and pointer relocation: sMVX
leverages the non-overlapping address space to create the follower
variant. Therefore, the sMVX monitor is also responsible for gener-
ating the follower’s non-overlapping address space. On entering
the protected region (i.e., executing mvx_start()), the sMVX mon-
itor creates a thread for the follower variant using the clone()
system call. On most operating systems, threads share an almost
identical address space, except each thread has its own stack region.
sMVX thus has to relocate the follower’s memory to construct the
non-overlapping address space. Moving the code and data in an
address space at runtime comes with challenges. These challenges
are similar to what is faced by the runtime address space layout
re-randomization systems [31, 56] but to a lesser extent. Figure 5
demonstrates this issue of relocating the process address space.

By linking the program as a position independent executable
(PIE), the code within the executable’s address space accesses its
own global data (i.e., .data and .bss) by using IP-relative address-
ing. This allows for relocation of the entire process address space,
which is what address space layout randomization (ASLR) [11]
relies on. This case is depicted with the blue arrow in Figure 5
where instructions in the .text section is still able to legally access
its .data. However, since we perform sMVX during the program
execution, there are pointers in global data and the heap regions
containing references to the now-unmapped original memory loca-
tions. These are shown as red arrows in the figure. This problem can

sMVX: Multi-Variant Execution on Selected Code Paths Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong

Original
Process

(Variant 1)

.text

.data

.bss

.rodata

Heap

Cloned
Process

(Variant 2)

.text '

.data '

.bss '

.rodata '

Heap

.text

.data

.bss

.rodata

Shift
and

clone

Original
Location

New
Location

Legal Access
Illegal Access

Figure 5. Pointer relocation for the follower variant

be partly solved using pointer tracking [31], compiler-assisted indi-
rection table for code pointers [56] or using the debug information
and a customized memory allocator [4].

In sMVX design, we combine the static pointer analysis and
runtime pointer scanning. As a result, we use the pointer analysis
(i.e., alias analysis) to narrow down the pointer locations and scan
the .data .bss and heap for function pointers to the old .text
location so execution doesn’t attempt to jump back to the old pro-
cess location. We also need to scan for data pointers pointing at
the old .data and .bss locations to prevent the follower variant
from attempting to access illegal memory. Scanning the memory
byte-by-byte can be expensive. Fortunately, pointers are 8-bytes
aligned on x86_64 systems [34]. In sMVX implementation, we scan
each 8-bytes aligned memory slot and use the existing code/data
addresses to verify the memory slots are pointers. This is similarly
used in RuntimeASLR [31] for false positive pointer identification.
We have to note that pointer scanning cannot reliably identify
pointers in memory. There might be integer values that look like
pointers. sMVX uses this strawman approach to demonstrate the
feasibility of selective MVX. Once we have the pointers’ addresses,
we update these pointers with the appropriate offset to ensure they
point to the shifted address space. Note that dynamic memory allo-
cations (e.g., malloc()) are allowed on the follower variant after its
creation. This is because once the variant is alive, it executes mostly
independently from the original program. The follower variant can
directly access its newly allocated memory blocks without the need
to update memory addresses.

Application domains for sMVX: sMVX is better suited for
applications with a distinct division between potentially vulnerable
code, such as handling external inputs, and less vulnerable code, like
a background program logic. Conversely, programs that intertwine
external input handling with core program logic are more suitable
for a traditional MVX system.

4 Evaluation
We evaluate the performance impact (including CPU and memory
usage) and the security benefit of the sMVX system running on top
of the in-process monitor. All of our evaluation was performed on a
server with an Intel Xeon(R) Silver 4110 CPU @ 2.10GHz and 92GB
of RAM. The server runs Debian 9 with Linux kernel version 5.2.10.
sMVX is compiled as a shared library and pre-loaded when running

the target application. Currently, the sMVX monitor simulates 35
libc library calls for the follower variant execution.

4.1 Performance Evaluation
We first chose to evaluate sMVX’s performance on the Linux/U-
nix release of the BYTEmark benchmark suite, also known as
Nbench [5]. The benchmark includes applications such as Neu-
ral Network computation and IDEA encryption algorithm and runs
in a single thread. This benchmark shows how sMVX performs
when run against applications heavily utilizing the system’s CPU,
FPU, and memory system. We enclosed the main logic of the bench-
mark with mvx_start()/mvx_end() and conducted three separate
runs of the benchmark applications both with and without sMVX.
Subsequently, we recorded the mean values of the execution time
for each case. Figure 6 reports the overhead of running the bench-
mark under sMVX. Executing sMVX on CPU-intensive programs
gives us very promising performance numbers. As shown in Fig-
ure 6, sMVX brings an average of 7% of performance overhead.
Applications such as Number Sort, Bitfield, and Assignment per-
form almost close to the native execution. This is because they are
primarily CPU-intensive. Thus, the overhead of the lock-step check
is low. The highest overhead seen is the Neural Network bench-
mark, with about 16% performance slowdown. This is likely due to
its relatively high I/O usage (of reading the model file) compared
to other tests.

sM
V

X
 N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

0%

5%

10%

15%

20%

Num so
rt

Stri
ng s

or
t

FP em
ulat

ion

Bitf
iel

d

Assi
gn

men
t

Id
ea

Huffm
an

Neu
ra

l N
et

LU D
eco

mp

Figure 6. Overhead of running nbench under sMVX.

To evaluate how sMVX performs on I/O heavy and real-world
workloads, we measured the performance overhead of sMVX using
two server applications. Specifically, we employed the ApacheBench
(ab) server benchmarking tool as our workload generator, conduct-
ing tests on the loopback network interface with a latency of 0.1ms,
consistent with that mentioned in a state-of-the-art MVX system –
ReMon [8, 49]. We chose to compare sMVX with ReMon because
ReMon is widely recognized for its superior performance compared
to other MVX systems such as VARAN [17], Orchestra [39], and
GHUMVEE [8]. The page size that we were serving from the web
servers was 4KB in length. We used the HTTP throughput of vanilla
application execution as the baseline to normalize the performance
overhead of ReMon and sMVX (Figure 7). With sMVX, we achieve
a 266% overhead for Nginx and a 223% overhead for Lighttpd.

To understand the reason behind the performance differences,
we also measured the total number of libc calls and system calls

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

issued from each application. We reported the ratio of the number
of libc calls versus system calls in Figure 7. For Nginx, there will be
about 5.4 libc calls issues over one system call, while that ratio rises
to 7.8 for Lighttpd (the y-axis on the right side of Figure 7). The
ratio indicates more libc calls are issued than system calls during
the program execution2. Since ReMon intercepts and emulates sys-
tems calls, it suffers less overhead from the emulation (less frequent
monitor code invocation). On the other hand, sMVX has to invoke
the monitor code more frequently. This is especially the case for
Lighttpd, the ratio is up to 7.8, leading to a larger overhead. Further-
more, sMVX currently uses a costly pointer scanning approach to
relocate pointers (Table 2). These sources of overhead overshadow
the performance gain from selective multi-variant execution. More-
over, ReMon is highly customized for variants’ synchronization.
Therefore, sMVX cannot ultimately outperform ReMon in terms
of performance. However, we envision a different variant creation
strategy that can be used to avoid pointer updates. For example,
we can create two program variants with varying options of the
compiler (e.g., one with forward control-flow integrity enabled and
one with shadow stack enabled). This way, we can align the func-
tion addresses but still have different variant layouts. We leave
performance optimization as future work.

5.391411423

7.798033961

Pe
rc

en
ta

ge
 O

ve
rh

ea
d

(L
ow

er
 is

 b
et

te
r)

R
at

io
 o

f L
ib

c
to

 S
ys

ca
lls

 (F
ul

l P
ro

te
ct

io
n)

0%

100%

200%

300%

0

1

2

3

4

5

6

7

8

9

nginx lighttpd

ReMon sMVX Normalized Libc/Syscall Ratio

Figure 7. Nginx and Lighttpd performance under sMVX

CPU cycles saved from selective MVX. We also measured
the CPU cycles saved by sMVX. Since the follower program variant
can be created and destroyed repetitively, it is hard to obtain the
overall CPU cycles used by all short-living variants during the run-
time. Our experiment calculates the CPU cycles saved by profiling
a single variant of the Nginx web server. Specifically, we leverage
the Linux profiler tool – perf [24] to profile the CPU cycles used
by each function. We further use the flame graph [14] to visualize
the call graph and the corresponding CPU usage of each func-
tion. We found that the outermost tainted function we identified
(i.e., ngx_http_process_request_line()) consumes 60.8% total
CPU cycles for the ApacheBenchworkload. Other tainted functions
identified are within the subtree of that outermost function. There-
fore, we can apply sMVX on one function for the best trade-off
between the performance and security of the MVX system. Consid-
ering we have two variants running under sMVX and a traditional
MVX system, the CPU consumption of replicating the Nginx web
2This is because some libc calls (e.g., malloc()) don’t have to issue a system call
immediately. Instead, they can serve the application using pre-allocated resources.

server is ≈160% versus 200%, correspondingly. We similarly pro-
filed the CPU usage of Lighttpd. We choose the outermost function
server_main_loop() that contains all the sensitive functions iden-
tified.We find that server_main_loop() consumes 70% of the total
CPU cycles from the flame graph. Therefore, the CPU consumption
of replicating Lighttpd with sMVX is ≈170% versus 200% under
traditional MVX systems.

Memory consumption saved from selective MVX. We mea-
sured the memory consumption of Nginx and Lighttpd both with
and without sMVX using the Linux pmap command, and recorded
the Resident Set Size (RSS) values [55]. The RSS indicates howmuch
RAM a process has been allocated during its execution. Addition-
ally, we replicated the vanilla applications to simulate the memory
usage of a traditional MVX system. All measurements were taken
after 10 HTTP requests. Running Nginx under sMVX consumes
3208KB of RAM, whereas running two copies of vanilla Nginx con-
sumes 6392KB of RAM3. Similarly, running Lighttpd under sMVX
consumes 1372KB of RAM, while running two copies of vanilla
Lighttpd instances consumes 2720KB (1360KB × 2) of RAM.

The savings in CPU and memory resources stem from the re-
duced code regions requiring replication. Consequently, this aspect
is independent of the specific MVX implementation, whether it be
an in-process monitor or an out-of-process monitor. However, when
compared to MVX systems that run variants on distinct OS kernels
and different machines [9, 25, 53, 59], sMVX notably conserves
significantly more CPU and memory resources.

Numbers of libc calls for simulation under different pro-
tected functions. To further understand the internal relationship
of function calls and MVX-related libc calls are in each selected
function call, we measured the number of libc calls when dynam-
ically choosing different functions as the protected region. We
started by protecting the entire program call graph (i.e., main()),
and then shrunk the protected code region and measured the li-
brary call numbers in other primary Nginx functions. We collected
the number of procedure calls to the PLT (primarily libc library) in
Nginx under the benchmark workload with 100k HTTP requests.
As we reduce the protected call graph size, fewer libc calls are is-
sued (Figure 8). It means the sMVX monitor only has to emulate a
smaller number of libc calls for the follower variant. Consequently,
fewer CPU resources are consumed. We expect the performance
of sMVX to generally increase, except for functions directly in the
control loop of the program, as that would repetitively incur the
overhead from process duplication and pointer updates. Note that
the purple triangles denote the functions deemed tainted through
our taint analysis performed in Section 3.2, showing fewer PLT
calls that need to be duplicated and checked over protecting the
main() function.

The cost of variant creation (pointers relocation). sMVX
relies on both static analysis and dynamic pointer scanning to
identify the pointers requiring updating (refer to Section 3.4). This
occurs upon invoking the mvx_start() function. A breakdown
of the overheads on the Lighttpd web server is shown in Table 2.
We observe that the latency from the process duplication itself is
trivial compared to the overheads seen when scanning the heap
for code or data pointers pointing to the original .data, .bss or

3We configured Nginx to use 1 master process and 1 worker process. Running Nginx
under sMVX takes 1708KB + 1500KB of RAM for the master process and the worker
process, respectively. Running two copies of Nginx takes 1704KB + 1492KB + 1704KB
+ 1492KB of RAM.

sMVX: Multi-Variant Execution on Selected Code Paths Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong

8826795

7400133

4500108
4100126

3700156

100000 100000 100000

N
um

be
r

of
 li

bc
 c

al
ls

 in
 p

ro
te

ct
ed

 r
eg

io
n

0

2.50E+6

5.00E+6

7.50E+6

1.00E+7

main(full n
ginx protection)

ngx_single_process_cycle

ngx_http_core_content_phase

ngx_http_process_request_line

ngx_http_handler

ngx_http_parse_request_line

ngx_http_validate_host

ngx_http_index_handler

Figure 8. Number of libc calls within protected region (the purple
triangles denote the tainted functions).

.text locations. Furthermore, the time overhead of the process
duplication is akin to vanilla thread creation, approximately around
10 𝜇𝑠 (Table 2). In comparison, the process creation with fork()
imposes an overhead of about 640 𝜇𝑠 . When the variant creation is
within control loops, we noticed the performance overhead raises
high. Similar issue is also found in previous RuntimeASLRwork [31]
and the issue can be similarly solved by pre-scanning and pre-
updating the variant. However, when the variant creation is outside
of the control loop code path, the overhead comes to normal as we
described above.

Source Latency (𝜇𝑠)
Process duplication (copy+move) 14.7
Data pointer scan overhead 320.8
Heap pointer scan overhead 13162.4
Thread creation with clone() (empty function) 9.5
fork() overhead (empty main() function) 640
fork() overhead (during Lighttpd initialization) 697

Table 2. mvx_start() overheads on Lighttpd

Identify tainted functions through fuzzing. We also eval-
uated the effectiveness of sensitive functions identified through
dynamic taint analysis. We used the standard web server workload
generator (ApacheBench or ab) and a URL fuzzer (scout)4 to gener-
ate the workload that covers as many cases as possible. We sent the
workload to an Nginx server running on top of the taint analysis
engine (described in Section 3.2). We started with the ApacheBench
workload, and our tool reported 16 sensitive functions, as shown
in Figure 9. Next, we ran the scout URL fuzzer and checked the
number of sensitive functions throughout the whole fuzzing pro-
cess. scout can quickly find a large number of sensitive functions
in 5 minutes (Figure 9). It finished the fuzzing task in 41 minutes
and generated a 2.92 GB trace file. By parsing the trace log, we
found 30 sensitive functions. We also observed that running these

4
https://github.com/liamg/scout

workloads on web server applications does not trigger false posi-
tives of pointer relocation, which shows a tiny chance of pointer
misidentification.

N
um

be
r o

f s
en

si
tiv

e
fu

nc
tio

ns
 id

en
tif

ie
d

0

10

20

30

40

ab fuzzing
(1min)

fuzzing
(5min)

fuzzing
(30min)

fuzzing
(41min,end)

Figure 9. Number of sensitive functions from taint analysis

4.2 sMVX Security Analysis
We take a look at the security guarantees that the sMVX system
provides. These security guarantees of sMVX are not that different
from those found in other MVX systems [25, 39, 46, 49, 53]. We rely
on the variation between two variants to elicit a different response
(whether a different libc call sequence or segfault and crashing)
with the same (attack) payload. The divergence between Variant 1
and Variant 2 in sMVX is provided by the non-overlapping address
spaces of each variant. This results in control-flow-hijacking attacks
such as ROP or return-to-libc failing to execute ROP chains con-
taining gadgets found in the program’s address space consistently
between variants, as the locations of these gadgets will differ, caus-
ing memory access errors in Variant 2 when attempting to jump to
original gadget locations from Variant 1. Suppose an attacker at-
tempts to modify the program stack data through non-control-data
attacks via a buffer overflow vulnerability, causing a divergence in
program execution. In that case, the MVX engine will throw a fault
and alarm the monitor system due to differing libc function call
sequences between the two variants. Such execution divergence
can also be detected when comparing the input arguments of libc
calls. We now demonstrate sMVX’s capability in detecting such
exploits using a real-world example:

Nginx CVE 2013-2028: To evaluate the security of sMVX we
sought to reproduce a memory corruption vulnerability on one
of our guarded applications. In particular, we chose to reproduce
a stack-based buffer overflow vulnerability occurring on Nginx,
allowing us to perform an out-of-bounds write, overwriting con-
trol data of the application, and gain control of the control flow
of the web server. The experiment was performed on the Nginx
web server version 1.3.9, which contained this vulnerability. The
bug in Nginx allowed a remote attacker to specify the size of
a chunked HTTP request when issuing a HTTP request with a
header “Transfer-Encoding:chunked”. This value is an unsigned
number, which can later be misrepresented as a negative integer
when cast to a signed type. The integer can later be re-casted
from a negative signed value to an unsigned integer and used as
the data size to read a buffer. Specifically, the target function be-
ing exploited, ngx_http_read_discarded_request_body(), con-
tains a buffer that will receive data from the attacker via the recv()

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

libc library call, with the goal being to trick recv() to perform a
buffer out-of-bounds write into that buffer. Therefore, the variable
r->headers_in.content_length_n is indirectly under attacker’s
control, ultimately allowing it to be a negative number which when
casted to size_t, becomes a large positive number. More details
can be found in [52]. This buffer overflow allows us to begin a
return-oriented programming attack on Nginx. In our exploit, we
performed a simple ROP chain using gadgets found in the program
address space utilizing the Ropper [41] and ROPGadget [22] tools.
Since we are not attempting to prove the turing-completeness of
ROP chains, the actual logic being performed is of less importance
than its observability. Our ROP chain consists of 3 gadgets and 3
values, loading a pointer to a string found in the application to
%rdi, popping an integer from the stack to %rsi, and jumping to
the location of the mkdir libc call to create a directory.

Running the exploit on Nginx protected by sMVX, we observe
that the follower variant throws a fault when the program counter
tries to jump to gadget locations that were present in the leader vari-
ant’s address space but were otherwise unmapped in the follower
variant. Thereby, sMVX detects and breaks the attack. In addition,
we should note that recv() is one of the I/O libc calls simulated on
the follower variant. This allows the in-process monitor to perform
extra bounds checks on sensitive calls in the future to prevent such
attacks from occurring. We also examined other Nginx CVEs, such
as CVE-2016-4450 and CVE-2017-7529. Since these CVEs appear in
different Nginx versions and fewer existing exploits are publicly
available, we did not reproduce them on the sMVX-protected Nginx
instance. Instead, we manually examined them and confirmed the
vulnerable functions are on the sensitive code paths and should be
detected by sMVX due to the non-overlapping address space.

5 Limitations and Future Works
sMVX uses LD_PRELOAD to launch the in-process sMVXmonitor to
the process’s address space. Therefore, it does not support statically-
linked applications or applications with the setuid/setgid per-
mission. sMVX provides an API for application programmers
to annotate the protected code region. A dynamic taint analysis
method is also proposed to guide the code annotation. However,
the dynamic taint analysis results heavily depend on the selected
test input and it is difficult to obtain an accurate sensitive region.
As a result, the actual attack payload may touch functions beyond
the protected code region (a false negative in exploit detection).
One solution is to leverage state-of-the-art test case generation
techniques, such as fuzzing [44] to generate as many test cases as
possible. We anticipate that combining fuzzing techniques with
the taint analysis might help increase the code coverage and ob-
tain a more accurate set of sensitive functions. Another possible
solution is to combine the dynamic taint analysis result and the
static program analysis to find a more accurate set of sensitive
functions [12, 35]. Static value flow (SVF) [43] analyzes the load
and store instructions in the middle-end compiler representation
(i.e., LLVM IR) to track sensitive value flows. Specifically, it can
statically analyze the memory value locations derived from the
tainted input and infer the sensitive functions. However, the static
analysis may calculate a larger (overestimate) sensitive function
set. Therefore, obtaining an accurate list of sensitive functions is
our future work.

When running sMVX and protecting functions within event
loops, we ran into a performance issue - the overheads involved
in the setup of the second variant dominate the savings we re-
ceive from not having to perform MVX lockstep execution on un-
tainted portions of the application. Although we used the efficient
clone() system call with memory movements to generate the fol-
lower variant, the event loop amplifies this cost. We observe that
the latency from duplicating the process itself is trivial compared
to the overheads seen when scanning the heap for code or data
pointers pointing to the original .data, .bss or .text locations.
This pointer updating issue was also mentioned in literature such
as RuntimeASLR [31]. Because of this, we anticipate sMVX may
not be suitable for pointer-intensive applications, such as graph
processing and data searching applications, especially for massive
pointers processing within sensitive regions. However, sMVX may
be more practical to systems with a clear separation of front-end (re-
ceiving and processing user input) and back-end code logic. Merely
replicating the front-end code can achieve better security at a lower
performance penalty, fewer CPU cycles, and less memory usage
than directly applying MVX techniques to the whole system.

One possible way to efficiently track the pointers at runtime
is to leverage the upcoming hardware tagged memory [2, 21].
Specifically, we can associate different tag values to distinguish
pointers from normal data and leverage the hardware to track
pointer value flows. Besides leveraging the upcoming hardware,
another approach is to generate an indirect jump table for all point-
ers [3, 56]. The indirection table contains the actual pointer target
addresses. One challenging problem of this approach is to iden-
tify data pointers allocated from dynamically allocated memory
(e.g., from malloc()). One solution is to statically analyze memory
allocations that contain data pointers and replace the correspond-
ing malloc() with a customized one. The customized malloc()
replaces the data pointer to an address of an indirection table. There-
fore, the sMVX monitor only needs to update each entry in the
indirection table instantly instead of finding all pointers through
the whole memory. There may be other ways to create a diversified
follower variant more efficiently. For example, we may only shuf-
fle the order of basic blocks within the target functions but keep
function addresses unchanged to avoid updating code pointers. We
leave these potential optimizations as future works.

6 Related Work
The first category of related work is the various systems on multi-
variant execution. In general, the MVX monitor plays an important
role in ensuring the correct and safe execution of the variants. There
are multiple design choices for the MVX monitor [49]. Some MVX
systems place the system-call interception monitors outside the
target process for more robust isolation through, for example, the
ptrace interface [16, 39, 50]. The cross-process system call moni-
toring enables strong memory isolation between the MVX monitor
code and the target. However, they may suffer from large perfor-
mance overhead. On the contrary, some MVX monitors within the
target process’s address space often perform better [17, 54]. One
such monitor is VARAN [17], which locates in userspace as a stati-
cally linked library but performs system call interception by rewrit-
ing the binary and patching system calls in the application binary
to redirect the execution to dedicated handlers. ReMon [49] com-
bines an (insecure) in-process monitor and a (secure) cross-process

sMVX: Multi-Variant Execution on Selected Code Paths Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong

monitor to achieve the best trade-off of security and near-native
performance. Although it reduces the performance overhead of
the MVX system, ReMon (and existing MVX systems) still runs
multiple program variants entirely and thus consumes multiple
times of CPU and memory usage [49].

Other MVX monitors reside within the operating system kernel,
so they are isolated from the program variant and require fewer
context switches [9, 25, 53, 59]. N-Variant [9] is an in-kernel moni-
tor and is the pioneering paper in this field. It uses a heterogeneous
memory space and instruction set tagging where the instructions
are pre-pended with a tag bit to create diversity between variants.
HeterSec [53] is an MVX system working across heterogeneous
Instruction Set Architectures (ISA). The variance in ISA and stack
layout between architectures guarantees that an attack payload
working on a particular variant does not replicate its effects on
another variant on another architecture. kMVX [59] also uses an
in-kernel monitor but focuses on protecting the kernel from infor-
mation leak vulnerabilities. In contrast, we do not aim to provide a
new MVX technique or a different strategy for variant creation; in-
stead, we aim to reduce the resource consumption of MVX systems
by selectively replicating sensitive code regions.

The second category of related work is the recent effort in
intra-process isolation and dynamic protection. Researchers have
proposed using operating system primitives [29], hardware primi-
tives [26, 27, 58] and even virtualization techniques [30] to protect
sensitive data inside the address space. For example, light-weight
contexts (lwCs) modifies the OS kernel to provide independent
units of isolation within a process [29]. LOTRx86 repurposed the
unused privilege rings (i.e., ring 1 and ring 2) to achieve the intra-
process privilege separation [26]. ARMlock leverages the ARM
memory domain to isolate untrusted library code from being ma-
liciously used [58]. These systems achieve intra-process isolation
by providing various memory views to different process compo-
nents. Following this direction, recent work leverage the Intel
MPK to achieve sensitive data isolation with cheaper performance
cost [15, 20, 36, 45, 54]. For example, libmpk is proposed as a library
to protect sensitive data and virtualize the protection keys to solve
the scalability problem [36]. ERIM utilizes binary inspection and
rewriting to prevent unintended sensitive MPK instructions from
being maliciously used [45]. sMVX extends this direction by im-
plementing a secure in-process MVX monitor with a per-thread,
MPK-protected safe stack. sMVX also adopts the concept of selec-
tive software protection [33, 35]. Particularly, DynPTA combines
static and dynamic analysis to selectively protect sensitive data [35].
DynaCut dynamically eliminates unused code features across vari-
ous software execution phases to minimize the attack surface [33].
sMVX aligns with this research line but focuses on reducing the
CPU and memory overhead of MVX systems.

7 Conclusion
We have presented sMVX, a system for multi-variant execution on
selected code paths. sMVX allows the end-user to define a protec-
tion region to be replicated. Users can apply only three lines of code
instrumentation to indicate the sMVXmonitor for creating the vari-
ant of selected sensitive code paths. Moreover, sMVX also provides
a dynamic taint analysis tool to identify security-sensitive func-
tions in an application semi-automatically. A prototype of sMVX
was built with a hardware-secured in-process code monitor. The

evaluation shows sMVX can achieve similar performance overhead
as the state-of-the-art MVX monitor but require 20% fewer CPU
cycles and 49% less memory consumption.

Acknowledgments
We thank Dr. R. Sekar, the anonymous reviewers, and our shep-
herd, Dr. Marios Kogias, for their insightful comments, which have
greatly improved the paper. This work is partly supported by the US
Office of Naval Research under grants N00014-18-1-2022, N00014-
19-1-2493, and N00014-22-1-2672, and by the US National Science
Foundation (NSF) under grant CNS 2127491. Any opinions, findings,
and conclusions expressed in this material are those of the authors
and do not necessarily reflect the views of these agencies.

References
[1] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-

berger, and Jannik Pewny. 2014. You Can Run but You Can’T Read: Preventing
Disclosure Exploits in Executable Code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14).

[2] Steve Bannister. 2019. Memory Tagging Extension: Enhancing
memory safety through architecture. Retrieved 06/23/2022 from
https://community.arm.com/arm-community-blogs/b/architectures-and-

processors-blog/posts/enhancing-memory-safety

[3] Sandeep Bhatkar, Daniel C DuVarney, and R Sekar. 2005. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits.. In USENIX Security
Symposium, Vol. 10. 1251398–1251415.

[4] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 268–279.

[5] BYTEmark benchmark. Accessed: 2024-03-20. Linux/Unix nbench. http://www.
math.utah.edu/~mayer/linux/bmark.html.

[6] Mengchen Cao, Xiantong Hou, Tao Wang, Hunter Qu, Yajin Zhou, Xiaolong Bai,
and Fuwei Wang. 2019. Different is Good: Detecting the Use of Uninitialized
Variables through Differential Replay. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz (Eds.). ACM, 1883–1897. https://doi.org/10.1145/3319535.3345654

[7] Liming Chen and A. Avizienis. 1995. N-VERSION PROGRAMMINC: A FAULT-
TOLERANCE APPROACH TO RELlABlLlTY OF SOFTWARE OPERATlON. In
Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ High-
lights from Twenty-Five Years’. 113–. https://doi.org/10.1109/FTCSH.1995.532621

[8] Bart Coppens, Bjorn De Sutter, and Stijn Volckaert. 2018. Multi-variant execution
environments. Association for Computing Machinery and Morgan & Claypool,
211–258. https://doi.org/10.1145/3129743.3129752

[9] Benjamin Cox and David Evans. 2006. N-Variant Systems: A Secretless Frame-
work for Security through Diversity. In Proceedings of the 15th USENIX Security
Symposium, Vancouver, BC, Canada, July 31 - August 4, 2006, Angelos D. Keromytis
(Ed.). USENIX Association.

[10] David Mulnix. Accessed: 2024-03-23. Intel® Xeon® Processor Scalable Fam-
ily Technical Overview. https://software.intel.com/en-us/articles/intel-xeon-

processor-scalable-family-technical-overview.
[11] Jake Edge. 2013. Linux Kernel Address Space Layout Randomization. http:

//lwn.net/Articles/569635/.
[12] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychron-

akis. 2020. Temporal System Call Specialization for Attack Surface Reduction.
In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 1749–1766.

[13] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-
tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-
independent code reuse: On the effectiveness of aslr in the absence of information
disclosure. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 227–242.

[14] Brendan Gregg. 2021. CPU Flame Graphs. Retrieved 06/23/2022 from https:

//www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

[15] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 489–504.

[16] Petr Hosek and Cristian Cadar. 2013. Safe software updates via multi-version
execution. In 35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus
Pohl (Eds.). IEEE Computer Society, 612–621.

[17] Petr Hosek and Cristian Cadar. 2015. VARAN the Unbelievable: An Efficient
N-version Execution Framework. In Proceedings of the Twentieth International

Middleware ’24, December 2–6, 2024, Hong Kong, Hong Kong SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran

Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’15, Istanbul, Turkey, March 14-18, 2015, Özcan Özturk, Kemal
Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, 339–353.

[18] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 969–986.

[19] Intel 2019. Intel 64 and IA-32 Architectures Software Developerś Manual. Intel.
[20] Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin Jang, and

Changwoo Min. 2021. VIP: Safeguard Value Invariant Property for Thwarting
Critical Memory Corruption Attacks. In ACM SIGSAC Conference on Computer
and Communications Security (CCS’21). Association for Computing Machinery.

[21] Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W. Moore,
Alex Bradbury, Hongyan Xia, Robert N. M. Watson, David Chisnall, Michael
Roe, Brooks Davis, Edward Napierala, John Baldwin, Khilan Gudka, Peter G.
Neumann, Alfredo Mazzinghi, Alex Richardson, Stacey D. Son, and A. Theodore
Markettos. 2017. Efficient Tagged Memory. In 2017 IEEE International Conference
on Computer Design, ICCD 2017, Boston, MA, USA, November 5-8, 2017. IEEE
Computer Society, 641–648. https://doi.org/10.1109/ICCD.2017.112

[22] JonathanSalwan. 2020. Ropgadget Github webpage. https://github.com/

JonathanSalwan/ROPgadget, Online accessed 2024-03-23.
[23] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D

Keromytis. 2012. libdft: Practical dynamic data flow tracking for commodity
systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments. 121–132.

[24] kernel.org. 2020. perf: Linux profiling with performance counters. Retrieved
06/23/2022 from https://perf.wiki.kernel.org/index.php/Main_Page

[25] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Efficient
Multi-Variant Execution using Hardware-Assisted Process Virtualization. In
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 431–442.

[26] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery,
New York, NY, USA, 1441–1454. https://doi.org/10.1145/3243734.3243748

[27] Congwu Li, Le Guan, Jingqiang Lin, Bo Luo, Quanwei Cai, Jiwu Jing, and Jing
Wang. 2019. Mimosa: Protecting Private Keys against Memory Disclosure Attacks
using Hardware Transactional Memory. IEEE Transactions on Dependable and
Secure Computing (2019).

[28] Linux. 2020. pkeys(7) — Linux manual page. https://man7.org/linux/man-
pages/man7/pkeys.7.html.

[29] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Ab-
straction for Safety and Performance. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 49–64.

[30] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (Denver, Colorado, USA) (CCS ’15). Association for Computing
Machinery, New York, NY, USA, 1607–1619.

[31] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How
to Make ASLR Win the Clone Wars: Runtime Re-Randomization. In 23rd An-
nual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. The Internet Society.

[32] Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, andWenke Lee. 2021. Stopping
Memory Disclosures via Diversification and Replicated Execution. IEEE Trans.
Dependable Secur. Comput. 18, 1 (2021), 160–173. https://doi.org/10.1109/TDSC.

2018.2878234

[33] Abhijit Mahurkar, Xiaoguang Wang, Hang Zhang, and Binoy Ravindran. 2023.
DynaCut: A Framework for Dynamic and Adaptive Program Customization. In
Proceedings of the 24th International Middleware Conference. 275–287.

[34] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013. System v
application binary interface. (2013).

[35] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychronakis.
2021. DynPTA: Combining Static and Dynamic Analysis for Practical Selective
Data Protection. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, 1919–1937.

[36] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 241–254.

[37] Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019.
MVEDSUA: Higher Availability Dynamic Software Updates via Multi-Version
Execution. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett
Witchel, and Alvin R. Lebeck (Eds.). ACM, 573–585. https://doi.org/10.1145/

3297858.3304063

[38] Radare Org. 2024. R2pipe Github webpage. https://github.com/radareorg/

radare2-r2pipe, Online accessed 2024-01-23.
[39] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:

intrusion detection using parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European conference on Computer
systems. ACM, 33–46.

[40] Salamat, Babak and Gal, Andreas and Franz, Michael. 2008. Reverse stack exe-
cution in a multi-variant execution environment. In Workshop on Compiler and
Architectural Techniques for Application Reliability and Security. 1–7.

[41] Sascha Schirra. 2024. Ropper Github webpage. https://github.com/sashs/Ropper,
Online accessed 2024-03-23.

[42] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure
program execution via dynamic information flow tracking. In Proceedings of the
11th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004, Shubu
Mukherjee and Kathryn S. McKinley (Eds.). ACM, 85–96.

[43] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265–266.

[44] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[45] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient in-Process Isola-
tion with Protection Keys (MPK). In Proceedings of the 28th USENIX Conference
on Security Symposium (SEC’19). USENIX Association, USA, 1221–1238.

[46] Jonas Vinck, Bert Abrath, Bart Coppens, Alexios Voulimeneas, Bjorn De Sutter,
and Stijn Volckaert. 2022. Sharing is caring: secure and efficient shared memory
support for MVEEs. In EuroSys ’22: Seventeenth European Conference on Computer
Systems, Rennes, France, April 5 - 8, 2022, Yérom-David Bromberg, Anne-Marie
Kermarrec, and Christos Kozyrakis (Eds.). ACM, 99–116.

[47] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning Your Gadgets:
Complete ROP Attack Immunity with Multi-Variant Execution. IEEE Trans.
Dependable Secur. Comput. 13, 4 (2016), 437–450.

[48] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. 2017. Taming Parallelism in a Multi-Variant Execution
Environment. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017, Gustavo Alonso, Ricardo
Bianchini, and Marko Vukolic (Eds.). ACM, 270–285.

[49] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,
Bjorn De Sutter, and Michael Franz. 2016. Secure and Efficient Application
Monitoring and Replication. In 2016 USENIXAnnual Technical Conference (USENIX
ATC 16). USENIX Association, Denver, CO, 167–179.

[50] Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn Volck-
aert. 2021. dMVX: Secure and Efficient Multi-Variant Execution in a Distributed
Setting. In Proceedings of the 14th European Workshop on Systems Security. 41–47.

[51] Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. 2020. Distributed Heterogeneous N-Variant
Execution. In Detection of Intrusions and Malware, and Vulnerability Assessment
- 17th International Conference, DIMVA 2020, Lisbon, Portugal, June 24-26, 2020,
Proceedings, Clémentine Maurice, Leyla Bilge, Gianluca Stringhini, and Nuno
Neves (Eds.), Vol. 12223. Springer, 217–237.

[52] w00d. 2013. Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64 exploita-
tion (CVE-2013-2028)). https://www.vnsecurity.net/research/2013/05/21/analysis-
of-nginx-cve-2013-2028.html.

[53] Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon Kim,
and Binoy Ravindran. 2020. A Framework for Software Diversification with ISA
Heterogeneity. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses, RAID 2020, San Sebastian, Spain, October 14-15, 2020, Manuel Egele
and Leyla Bilge (Eds.). USENIX Association, 427–442.

[54] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and efficient in-process monitor (and library) protectionwith Intel MPK. In
Proceedings of the 13th European Workshop on Systems Security, EuroSec@EuroSys
2020, Heraklion, Greece, April 27, 2020. ACM, 7–12.

[55] Wikipedia. Accessed: 2024-03-20. Resident set size. https://en.wikipedia.org/
wiki/Resident_set_size.

[56] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization.. In OSDI. 367–382.

[57] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang Fu, Yang Zhang, and Yibin
Shen. 2019. Fast and Scalable VMMLive Upgrade in Large Cloud Infrastructure. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019. ACM, 93–105.

[58] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:
Hardware-Based Fault Isolation for ARM. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (Scottsdale, Arizona, USA)
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 558–569.

[59] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert
Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting Kernel Information Leaks
with Multi-variant Execution. In ASPLOS.

